·ÖÎö £¨1£©ÓÉÌâÒâÉèP£¨x£¬y£©£¬Ôò$\overrightarrow{OP}$=$\frac{1}{2}£¨0£¬{y}_{0}£©$+$\frac{\sqrt{3}}{3}$£¨x0£¬0£©=$£¨\frac{\sqrt{3}}{3}{x}_{0}£¬\frac{{y}_{0}}{2}£©$£®¿ÉµÃ$x=\frac{\sqrt{3}}{3}{x}_{0}$£¬y=$\frac{{y}_{0}}{2}$£¬½âµÃx0=$\sqrt{3}$x£¬y0=2y£¬ÓÖ${x}_{0}^{2}$+${y}_{0}^{2}$=12£¬´úÈëÔ²µÄ·½³Ì¼´¿ÉµÃ³ö£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$£¬¿ÉµÃ£¨3+4k2£©x2+8kmx+4m2-12=0£¬¡÷=0£¬¿ÉµÃ£ºm2=3+4k2£®A1£¨-2£¬0£©µ½lµÄ¾àÀëd1=$\frac{|-2k+m|}{\sqrt{1+{k}^{2}}}$£¬A2£¨2£¬0£©µ½lµÄ¾àÀëd2=$\frac{|2k+m|}{\sqrt{1+{k}^{2}}}$£¬¿ÉµÃ|MN|2=$|{A}_{1}{A}_{2}{|}^{2}$-$|{d}_{1}-{d}_{2}{|}^{2}$=$\frac{16}{1+{k}^{2}}$.${d}_{1}^{2}+{d}_{2}^{2}$=$\frac{12+16{k}^{2}}{1+{k}^{2}}$£®¿ÉµÃËıßÐÎA1MNA2µÄÃæ»ýS=$\frac{£¨{d}_{1}+{d}_{2}£©|MN|}{2}$£¬ÀûÓöþ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâÉèP£¨x£¬y£©£¬Ôò$\overrightarrow{OP}$=$\frac{1}{2}£¨0£¬{y}_{0}£©$+$\frac{\sqrt{3}}{3}$£¨x0£¬0£©=$£¨\frac{\sqrt{3}}{3}{x}_{0}£¬\frac{{y}_{0}}{2}£©$£®
¡à$x=\frac{\sqrt{3}}{3}{x}_{0}$£¬y=$\frac{{y}_{0}}{2}$£¬½âµÃx0=$\sqrt{3}$x£¬y0=2y£¬
ÓÖ${x}_{0}^{2}$+${y}_{0}^{2}$=12£¬´úÈë¿ÉµÃ£º3x2+4y2=12£¬»¯Îª£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$£¬¿ÉµÃ£¨3+4k2£©x2+8kmx+4m2-12=0£¬
¡÷=64k2m2-4£¨3+4k2£©£¨4m2-12£©=48£¨3+4k2-m2£©=0£¬
¿ÉµÃ£ºm2=3+4k2£®A1£¨-2£¬0£©µ½lµÄ¾àÀëd1=$\frac{|-2k+m|}{\sqrt{1+{k}^{2}}}$£¬
A2£¨2£¬0£©µ½lµÄ¾àÀëd2=$\frac{|2k+m|}{\sqrt{1+{k}^{2}}}$£¬
Ôò|MN|2=$|{A}_{1}{A}_{2}{|}^{2}$-$|{d}_{1}-{d}_{2}{|}^{2}$=16-[$\frac{£¨2k-m£©^{2}}{1+{k}^{2}}$+$\frac{£¨2k+m£©^{2}}{1+{k}^{2}}$-$\frac{2|4{k}^{2}-{m}^{2}|}{1+{k}^{2}}$]
=16-$£¨\frac{2{m}^{2}+8{k}^{2}}{1+{k}^{2}}-\frac{6}{1+{k}^{2}}£©$=16-$£¨\frac{6+16{k}^{2}}{1+{k}^{2}}-\frac{6}{1+{k}^{2}}£©$=16-$\frac{16{k}^{2}}{1+{k}^{2}}$=$\frac{16}{1+{k}^{2}}$£®
${d}_{1}^{2}+{d}_{2}^{2}$=$\frac{£¨2k-m£©^{2}}{1+{k}^{2}}$+$\frac{£¨2k+m£©^{2}}{1+{k}^{2}}$+$\frac{2|4{k}^{2}-{m}^{2}|}{1+{k}^{2}}$=$\frac{6+16{k}^{2}}{1+{k}^{2}}+\frac{6}{1+{k}^{2}}$=$\frac{12+16{k}^{2}}{1+{k}^{2}}$£®
¡àËıßÐÎA1MNA2µÄÃæ»ýS=$\frac{£¨{d}_{1}+{d}_{2}£©|MN|}{2}$=$\frac{1}{2}\sqrt{\frac{12+16{k}^{2}}{1+{k}^{2}}•\frac{16}{1+{k}^{2}}}$=4$\sqrt{\frac{3+4{k}^{2}}{£¨1+{k}^{2}£©^{2}}}$=4$\sqrt{4-£¨\frac{1}{1+{k}^{2}}-2£©^{2}}$¡Ü4$\sqrt{3}$£®
µ±k=0ʱ£¬È¡µÈºÅ£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì·½³Ì¡¢Ö±ÏßÓëÍÖÔ²ÏàÇеÄÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ËıßÐÎÃæ»ý¼ÆË㹫ʽ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 44 | B£® | 36 | C£® | 27 | D£® | 18 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{17\sqrt{2}}{26}$ | B£® | -$\frac{7\sqrt{2}}{26}$ | C£® | $\frac{7\sqrt{2}}{26}$ | D£® | $\frac{17\sqrt{2}}{26}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com