12£®ÒÑÖªD£¨x0£¬y0£©ÎªÔ²O£ºx2+y2=12ÉÏÒ»µã£¬E£¨x0£¬0£©£¬¶¯µãPÂú×ã$\overrightarrow{OP}$=$\frac{1}{2}$$\overrightarrow{ED}$+$\frac{\sqrt{3}}{3}$$\overrightarrow{OE}$£¬É趯µãPµÄ¹ì¼£ÎªÇúÏßC£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©Èô¶¯Ö±Ïßl£ºy=kx+mÓëÇúÏßCÏàÇУ¬¹ýµãA1£¨-2£¬0£©£¬A2£¨2£¬0£©·Ö±ð×÷A1M¡ÍlÓÚM£¬A2N¡ÍlÓÚN£¬´¹×ã·Ö±ðÊÇM£¬N£¬ÎÊËıßÐÎA1MNA2µÄÃæ»ýÊÇ·ñ´æÔÚ×îÖµ£¿Èô´æÔÚ£¬ÇëÇó³ö×îÖµ¼°´ËʱkµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâÉèP£¨x£¬y£©£¬Ôò$\overrightarrow{OP}$=$\frac{1}{2}£¨0£¬{y}_{0}£©$+$\frac{\sqrt{3}}{3}$£¨x0£¬0£©=$£¨\frac{\sqrt{3}}{3}{x}_{0}£¬\frac{{y}_{0}}{2}£©$£®¿ÉµÃ$x=\frac{\sqrt{3}}{3}{x}_{0}$£¬y=$\frac{{y}_{0}}{2}$£¬½âµÃx0=$\sqrt{3}$x£¬y0=2y£¬ÓÖ${x}_{0}^{2}$+${y}_{0}^{2}$=12£¬´úÈëÔ²µÄ·½³Ì¼´¿ÉµÃ³ö£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$£¬¿ÉµÃ£¨3+4k2£©x2+8kmx+4m2-12=0£¬¡÷=0£¬¿ÉµÃ£ºm2=3+4k2£®A1£¨-2£¬0£©µ½lµÄ¾àÀëd1=$\frac{|-2k+m|}{\sqrt{1+{k}^{2}}}$£¬A2£¨2£¬0£©µ½lµÄ¾àÀëd2=$\frac{|2k+m|}{\sqrt{1+{k}^{2}}}$£¬¿ÉµÃ|MN|2=$|{A}_{1}{A}_{2}{|}^{2}$-$|{d}_{1}-{d}_{2}{|}^{2}$=$\frac{16}{1+{k}^{2}}$.${d}_{1}^{2}+{d}_{2}^{2}$=$\frac{12+16{k}^{2}}{1+{k}^{2}}$£®¿ÉµÃËıßÐÎA1MNA2µÄÃæ»ýS=$\frac{£¨{d}_{1}+{d}_{2}£©|MN|}{2}$£¬ÀûÓöþ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÉèP£¨x£¬y£©£¬Ôò$\overrightarrow{OP}$=$\frac{1}{2}£¨0£¬{y}_{0}£©$+$\frac{\sqrt{3}}{3}$£¨x0£¬0£©=$£¨\frac{\sqrt{3}}{3}{x}_{0}£¬\frac{{y}_{0}}{2}£©$£®
¡à$x=\frac{\sqrt{3}}{3}{x}_{0}$£¬y=$\frac{{y}_{0}}{2}$£¬½âµÃx0=$\sqrt{3}$x£¬y0=2y£¬
ÓÖ${x}_{0}^{2}$+${y}_{0}^{2}$=12£¬´úÈë¿ÉµÃ£º3x2+4y2=12£¬»¯Îª£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$£¬¿ÉµÃ£¨3+4k2£©x2+8kmx+4m2-12=0£¬
¡÷=64k2m2-4£¨3+4k2£©£¨4m2-12£©=48£¨3+4k2-m2£©=0£¬
¿ÉµÃ£ºm2=3+4k2£®A1£¨-2£¬0£©µ½lµÄ¾àÀëd1=$\frac{|-2k+m|}{\sqrt{1+{k}^{2}}}$£¬
A2£¨2£¬0£©µ½lµÄ¾àÀëd2=$\frac{|2k+m|}{\sqrt{1+{k}^{2}}}$£¬
Ôò|MN|2=$|{A}_{1}{A}_{2}{|}^{2}$-$|{d}_{1}-{d}_{2}{|}^{2}$=16-[$\frac{£¨2k-m£©^{2}}{1+{k}^{2}}$+$\frac{£¨2k+m£©^{2}}{1+{k}^{2}}$-$\frac{2|4{k}^{2}-{m}^{2}|}{1+{k}^{2}}$]
=16-$£¨\frac{2{m}^{2}+8{k}^{2}}{1+{k}^{2}}-\frac{6}{1+{k}^{2}}£©$=16-$£¨\frac{6+16{k}^{2}}{1+{k}^{2}}-\frac{6}{1+{k}^{2}}£©$=16-$\frac{16{k}^{2}}{1+{k}^{2}}$=$\frac{16}{1+{k}^{2}}$£®
${d}_{1}^{2}+{d}_{2}^{2}$=$\frac{£¨2k-m£©^{2}}{1+{k}^{2}}$+$\frac{£¨2k+m£©^{2}}{1+{k}^{2}}$+$\frac{2|4{k}^{2}-{m}^{2}|}{1+{k}^{2}}$=$\frac{6+16{k}^{2}}{1+{k}^{2}}+\frac{6}{1+{k}^{2}}$=$\frac{12+16{k}^{2}}{1+{k}^{2}}$£®
¡àËıßÐÎA1MNA2µÄÃæ»ýS=$\frac{£¨{d}_{1}+{d}_{2}£©|MN|}{2}$=$\frac{1}{2}\sqrt{\frac{12+16{k}^{2}}{1+{k}^{2}}•\frac{16}{1+{k}^{2}}}$=4$\sqrt{\frac{3+4{k}^{2}}{£¨1+{k}^{2}£©^{2}}}$=4$\sqrt{4-£¨\frac{1}{1+{k}^{2}}-2£©^{2}}$¡Ü4$\sqrt{3}$£®
µ±k=0ʱ£¬È¡µÈºÅ£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì·½³Ì¡¢Ö±ÏßÓëÍÖÔ²ÏàÇеÄÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ËıßÐÎÃæ»ý¼ÆË㹫ʽ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚÆ½ÃæËıßÐÎABCDÖУ¬AB=2£¬AD=$\sqrt{6}$$+\sqrt{2}$£¬BC=2$\sqrt{3}$£¬¡ÏABC=120¡ã£¬¡ÏDAB=75¡ã
£¨¢ñ£©Éè¡÷ABC¡¢¡÷ABDµÄÃæ»ý·Ö±ðΪS1£¬S2£¬ÇóÖ¤£ºS1£¼S2
£¨¢ò£©ÇóBDºÍDCµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¶¨Ò庯ÊýµÄ¡°¹Õµã¡±ÈçÏ£ºÉèf¡ä£¨x£©ÊǺ¯Êýf£¨x£©µÄµ¼Êý£¬f¡ä£¨x£©ÊǺ¯Êýf£¨x£©µÄµ¼º¯Êý£¬Èô·½³Ìf''£¨x£©=0ÓÐʵÊý½âx0£¬Ôò³Æµã£¨x0£¬f£¨x0£©£©Îªº¯Êýy=f£¨x£©µÄ¡°¹Õµã¡±£¬ÒÑÖªÈκÎÈý´Îº¯Êý¶¼ÓжԳÆÖÐÐÄ£¬ÇÒ¡°¹Õµã¡±¾ÍÊǶԳÆÖÐÐÄ£ºÈôf£¨x£©=x3-9x2+20x-4£¬ÊýÁÐ{an}ΪµÈ²îÊýÁУ¬a5=3£¬Ôòf£¨a1£©+f£¨a2£©+¡­+f£¨a9£©=£¨¡¡¡¡£©
A£®44B£®36C£®27D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=2|x+a|+|x-$\frac{1}{a}$|£¨a¡Ù0£©£®
£¨1£©µ±a=1ʱ£¬½â²»µÈʽf£¨x£©£¼4£»
£¨2£©Çóº¯Êýg£¨x£©=f£¨x£©+f£¨-x£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¦ÁÊÇÈñ½Ç£¬Èôcos£¨¦Á+$\frac{¦Ð}{6}$£©=$\frac{5}{13}$£¬Ôòsin£¨¦Á-$\frac{¦Ð}{12}$£©=£¨¡¡¡¡£©
A£®-$\frac{17\sqrt{2}}{26}$B£®-$\frac{7\sqrt{2}}{26}$C£®$\frac{7\sqrt{2}}{26}$D£®$\frac{17\sqrt{2}}{26}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AD¡ÍAB£¬$\overrightarrow{BC}$=$\sqrt{2}$$\overrightarrow{BD}$£¬|$\overrightarrow{AD}$|=2£¬Ôò$\overrightarrow{AC}•\overrightarrow{AD}$=4$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª£ºPΪÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{3}=1$£¨a£¾0£©ÉÏÒ»µã£¬QΪԲO£ºx2+y2=4ÉÏÒ»µã£¬F1¡¢F2·Ö±ðΪÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µã£¬$\overrightarrow{{F}_{1}P}$=¦Ë$\overrightarrow{OQ}$£¨¦Ë£¾0£©£¬$\overrightarrow{{F}_{2}Q}$•$\overrightarrow{PQ}$=0£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©Èô¦Ë=$\frac{5}{4}$ʱ£¬ÇóËıßÐÎPF1F2QµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªA£¨1£¬2£©£¬B£¨-2£¬1£©£¬OÎª×ø±êÔ­µã£¬ÈôÖ±Ïßl£ºax+by=2Óë¡÷ABOËùΧ³ÉÇøÓò£¨°üº¬±ß½ç£©Ã»Óй«¹²µã£¬Ôòa-bµÄȡֵ·¶Î§Îª[-2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4+5cost}\\{y=5+5sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£®
£¨1£©°ÑC1µÄ²ÎÊý·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÇóC1ÓëC2½»µãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸