分析 将所求写成用向量$\overrightarrow{AB},\overrightarrow{AD}$,表示的式子,然后进行数量积的运算.
解答
解:在△ABC中,AD⊥AB,$\overrightarrow{BC}$=$\sqrt{2}$$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=2,
则$\overrightarrow{AC}•\overrightarrow{AD}$=$(\overrightarrow{AB}+\sqrt{2}\overrightarrow{BD})•\overrightarrow{AD}$=$\overrightarrow{AB}•\overrightarrow{AD}+\sqrt{2}\overrightarrow{BD}•\overrightarrow{AD}$
=0+$\sqrt{2}×|\overrightarrow{BD}||\overrightarrow{AD}|cos∠ADB$=$\sqrt{2}×|\overrightarrow{AD}{|}^{2}$=4$\sqrt{2}$;
故答案为:4$\sqrt{2}$.
点评 本题考查了平面向量的数量积;熟练掌握数量积公式并且正确灵活运用是关键.
科目:高中数学 来源: 题型:选择题
| 收入x(万元) | 8.0 | 8.6 | 10.0 | 11.4 | 12.0 |
| 支出y(万元) | 4.1 | 5.2 | 6.1 | 6.7 | 7.9 |
| A. | 9.05万元 | B. | 9.25万元 | C. | 9.75万元 | D. | 10.25万元 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15π | B. | $\frac{15π}{2}$ | C. | $\frac{7π}{2}$ | D. | 7π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 重心、外心、垂心 | B. | 重心、外心、内心 | C. | 外心、重心、垂心 | D. | 外心、重心、内心 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com