精英家教网 > 高中数学 > 题目详情
3.如图,在△ABC中,AD⊥AB,$\overrightarrow{BC}$=$\sqrt{2}$$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=2,则$\overrightarrow{AC}•\overrightarrow{AD}$=4$\sqrt{2}$.

分析 将所求写成用向量$\overrightarrow{AB},\overrightarrow{AD}$,表示的式子,然后进行数量积的运算.

解答 解:在△ABC中,AD⊥AB,$\overrightarrow{BC}$=$\sqrt{2}$$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=2,
则$\overrightarrow{AC}•\overrightarrow{AD}$=$(\overrightarrow{AB}+\sqrt{2}\overrightarrow{BD})•\overrightarrow{AD}$=$\overrightarrow{AB}•\overrightarrow{AD}+\sqrt{2}\overrightarrow{BD}•\overrightarrow{AD}$
=0+$\sqrt{2}×|\overrightarrow{BD}||\overrightarrow{AD}|cos∠ADB$=$\sqrt{2}×|\overrightarrow{AD}{|}^{2}$=4$\sqrt{2}$;
故答案为:4$\sqrt{2}$.

点评 本题考查了平面向量的数量积;熟练掌握数量积公式并且正确灵活运用是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.为了解某公司员工的年收入和年支出的关系,随机调查了5名员工,得到如下统计数据表:
收入x(万元)8.08.610.011.412.0
支出y(万元)4.15.26.16.77.9
根据上表可得回归本线方程$\hat y=\hat bx+\hat a$,其中$\hat b=0.65$,$\hat a=\overline y-\hat bx$,据此估计,该公司一名员工年收入为15万元时支出为(  )
A.9.05万元B.9.25万元C.9.75万元D.10.25万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知菱形ABCD中,∠DAB=60°,AB=3,对角线AC与BD的交点为O,把菱形ABCD沿对角线BD折起,使得∠AOC=90°,则折得的几何体的外接球的表面积为(  )
A.15πB.$\frac{15π}{2}$C.$\frac{7π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x-a|+|x+a|.
(Ⅰ)当a=2时,解不等式f(x)>6;
(Ⅱ)若关于x的不等式f(x)<a2-1有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知D(x0,y0)为圆O:x2+y2=12上一点,E(x0,0),动点P满足$\overrightarrow{OP}$=$\frac{1}{2}$$\overrightarrow{ED}$+$\frac{\sqrt{3}}{3}$$\overrightarrow{OE}$,设动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)若动直线l:y=kx+m与曲线C相切,过点A1(-2,0),A2(2,0)分别作A1M⊥l于M,A2N⊥l于N,垂足分别是M,N,问四边形A1MNA2的面积是否存在最值?若存在,请求出最值及此时k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.画出计算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{999}$的值的一个程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点O、N、P在三角形ABC所在平面内,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,$\overrightarrow{PA}•\overrightarrow{PB}$=$\overrightarrow{PB}•\overrightarrow{PC}$=$\overrightarrow{PC}•\overrightarrow{PA}$,则点O、N、P依次是三角形ABC的(  )
A.重心、外心、垂心B.重心、外心、内心C.外心、重心、垂心D.外心、重心、内心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,椭圆C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α为参数),已知以坐标原点为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系.
(Ⅰ)把椭圆C的参数方程化为极坐标方程;
(Ⅱ)设A,B分别为椭圆C上的两点,且OA⊥OB,求$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ksin(kx+$\frac{π}{6}$)(k∈N*)的图象过点(π,1).
(1)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函数g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1的值域.

查看答案和解析>>

同步练习册答案