4£®ÈôÖ±Ïßl£ºy=$\frac{\sqrt{3}x}{3}$-$\frac{2\sqrt{3}}{3}$¹ýË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÒ»¸ö½¹µã£¬ÇÒÓëË«ÇúÏßµÄÒ»Ìõ½¥½üÏ߯½ÐУ®
£¨1£©ÇóË«ÇúÏߵķ½³Ì£»
£¨2£©Èô¹ýµãB£¨0£¬b£©ÇÒÓëxÖ᲻ƽÐеÄÖ±ÏߺÍË«ÇúÏßÏཻÓÚ²»Í¬µÄÁ½µãM£¬N£¬MNµÄ´¹Ö±Æ½·ÖÏßΪm£¬ÇóÖ±ÏßmÓëyÖáÉϵĽؾàµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÇóµÃÖ±ÏßlÓëxÖáµÄ½»µã£¬¿ÉµÃc=2£¬ÔÙÓÉÁ½Ö±Ï߯½ÐеÄÌõ¼þ£ºÐ±ÂÊÏàµÈ£¬¿ÉµÃ½¥½üÏß·½³Ì£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½Ë«ÇúÏߵķ½³Ì£»
£¨2£©ÉèÖ±Ïßy=kx+1£¨k¡Ù0£©£¬´úÈë$\frac{{x}^{2}}{3}$-y2=1¿ÉµÃ£¬£¨1-3k2£©x2-6kx-6=0£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÒÔ¼°Öеã×ø±ê¹«Ê½¼°Á½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬ÇóµÃMNµÄ´¹Ö±Æ½·ÖÏß·½³Ì£¬Áîx=0£¬¿ÉµÃÖ±ÏßÔÚyÖáÉϵĽؾ࣬Óɲ»µÈʽµÄÐÔÖʿɵ÷¶Î§£®

½â´ð ½â£º£¨1£©Ö±Ïßl£ºy=$\frac{\sqrt{3}x}{3}$-$\frac{2\sqrt{3}}{3}$¹ýxÖáÉÏÒ»µã£¨2£¬0£©£¬
ÓÉÌâÒâ¿ÉµÃc=2£¬¼´a2+b2=4£¬
Ë«ÇúÏߵĽ¥½üÏß·½³ÌΪy=¡À$\frac{b}{a}$x£¬
ÓÉÁ½Ö±Ï߯½ÐеÄÌõ¼þ¿ÉµÃ$\frac{b}{a}$=$\frac{\sqrt{3}}{3}$£¬
½âµÃa=$\sqrt{3}$£¬b=1£¬
¼´ÓÐË«ÇúÏߵķ½³ÌΪ$\frac{{x}^{2}}{3}$-y2=1£»
£¨2£©ÉèÖ±Ïßy=kx+1£¨k¡Ù0£©£¬
´úÈë$\frac{{x}^{2}}{3}$-y2=1¿ÉµÃ£¬£¨1-3k2£©x2-6kx-6=0£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
x1+x2=$\frac{6k}{1-3{k}^{2}}$£¬x1x2=$\frac{6}{3{k}^{2}-1}$£¬
MNÖеãΪ£¨$\frac{3k}{1-3{k}^{2}}$£¬$\frac{1}{1-3{k}^{2}}$£©£¬
¿ÉµÃMNµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪy-$\frac{1}{1-3{k}^{2}}$=-$\frac{1}{k}$£¨x-$\frac{3k}{1-3{k}^{2}}$£©£¬
Áîx=0£¬¿ÉµÃy=$\frac{4}{1-3{k}^{2}}$£¬
ÓÉ¡÷=36k2+24£¨1-3k2£©£¾0£¬½âµÃ3k2£¼2£¬
ÓÖ$\frac{6}{3{k}^{2}-1}$£¼0£¬½âµÃ3k2£¼1£¬
×ÛÉϿɵã¬0£¼3k2£¼1£¬
¼´ÓÐ$\frac{4}{1-3{k}^{2}}$µÄ·¶Î§ÊÇ£¨4£¬+¡Þ£©£¬
¿ÉµÃÖ±ÏßmÓëyÖáÉϵĽؾàµÄȡֵ·¶Î§Îª£¨4£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éË«ÇúÏߵķ½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÖ±ÏßÓëxÖáµÄ½»µãºÍÁ½Ö±Ï߯½ÐеÄÌõ¼þ£¬¿¼²éÖ±Ïß·½³ÌºÍË«ÇúÏß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÒÔ¼°Á½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®A£¬B£¬CÊÇÔ²OÉϲ»Í¬µÄÈýµã£¬Ïß¶ÎCOÓëÏß¶ÎAB½»ÓÚµãD£¬Èô$\overrightarrow{OC}$=¦Ë$\overrightarrow{OA}$+¦Ì$\overrightarrow{OB}$£¨¦Ë¡ÊR£¬¦Ì¡ÊR£©£¬Ôò¦Ë+¦ÌµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®£¨0£¬1£©C£®£¨1£¬$\sqrt{2}$]D£®£¨-1£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¶ÔÓÚº¯Êýf£¨x£©=sinxÊ®2cosx£¬¸ø³öÏÂÁÐÈý¸öÃüÌ⣺
¢Ù´æÔÚ¦Õ¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬Ê¹f£¨¦Õ£©=$\frac{3}{4}$£»
¢Ú´æÔÚ¦Õ¡ÊR£¬Ê¹º¯Êýf£¨x+¦Õ£©µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£»
¢Û´æÔÚ¦Õ¡ÊR£¬Ê¹º¯Êýf£¨x+¦Õ£©µÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ£®
ÆäÖÐÕæÃüÌâÊÇ¢Ú¢Û£®£¨ÌîÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®µ±Ë«ÇúÏߣº$\frac{{x}^{2}}{{m}^{2}+8}$-$\frac{{y}^{2}}{6-2m}$=1µÄ½¹¾àÈ¡µÃ×îСֵʱ£¬Æä½¥½üÏßµÄбÂÊΪ£¨¡¡¡¡£©
A£®¡À1B£®$¡À\frac{2}{3}$C£®$¡À\frac{1}{3}$D£®$¡À\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª¦ÁÊǵڶþÏóÏ޽ǣ¬ÇÒsin£¨$\frac{¦Ð}{2}$+¦Á£©=-$\frac{\sqrt{5}}{5}$£¬Ôò$\frac{{cos}^{3}¦Á+sin¦Á}{cos£¨¦Á-\frac{¦Ð}{4}£©}$=$\frac{9\sqrt{2}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÕýÈý½ÇÐÎABCÄÚ½ÓÓڰ뾶Ϊ2µÄÔ²O£¬µãPÊÇÔ²OÉϵÄÒ»¸ö¶¯µã£¬Ôò$\overrightarrow{PA}$•$\overrightarrow{PB}$µÄȡֵ·¶Î§ÊÇ[-2£¬6]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÉèÈ«¼¯U=R£¬A={x|y=ln£¨1-x£©}£¬B={x||x-1|£¼1}£¬ÔòA¡ÉB=£¨0£¬1£©£»£¨∁UA£©¡ÈB=£¨0£¬+¡Þ£©£»∁U£¨A¡ÉB£©=£¨-¡Þ£¬0]¡È[1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÊýÁÐ{an}ÖУ¬a1=1£¬$\frac{2}{{a}_{n}}$=$\frac{1}{{a}_{n+1}}+\frac{1}{{a}_{n-1}}$£¨n¡Ý2£¬n¡ÊN£©£¬a5=-11£¬ÔòÆäͨÏîΪan=$\frac{11}{14-3n}$£¨n¡ÊN+£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêÖØÇìÊи߶þÉÏѧÆÚÈëѧ¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

´Ó{1,2,3,4,5}ÖÐËæ»úѡȡһ¸öÊýΪa£¬´Ó{1,2,3}ÖÐËæ»úѡȡһ¸öÊýΪb£¬Ôòb>aµÄ¸ÅÂÊÊÇ£¨ £©

A. B. C. D.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸