精英家教网 > 高中数学 > 题目详情
1.已知:a,b,c∈R+,a+b+c=1,求证,$\sqrt{ab}$+2$\sqrt{bc}$≤$\frac{\sqrt{5}}{2}$.

分析 根据柯西不等式和基本不等式即可证明.

解答 证明:a,b,c∈R+,a+b+c=1,
∴($\sqrt{ab}$+2$\sqrt{bc}$)2≤(12+22)(ab+bc)=5b(a+c)≤5×($\frac{a+b+c}{2}$)2=$\frac{5}{4}$,
∴$\sqrt{ab}$+2$\sqrt{bc}$≤$\frac{\sqrt{5}}{2}$.

点评 本题考查了柯西不等式和基本不等式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.条件p:x2-2mx+m2-4>0,条件q:x2-x-2>0.
(1)是否存在m,使p是q充分条件,求出m的范围.
(2)是否存在m,使p是q的必要不充分条件,求出m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\frac{1}{x+b}$为奇函数,则f(-1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知不等式x2+ax+b<0的解集为(-3,-1),求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2x2+4x+1的定义域和值域都是[-1,a](a>-1),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=x2+2x+a,若函数y=f(f(x))有且只有2个不同的零点,则实数a的取值范围为$\frac{-1-\sqrt{5}}{2}$<a<$\frac{-1+\sqrt{5}}{2}$或a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(重点中学做)设函数y=ln(-x2-2x+8)的定义域为A,函数y=x+$\frac{1}{x+1}$的值域为B,不等式ax2+(4a-$\frac{1}{a}$)x-$\frac{4}{a}$≤0(a≠0且a∈R)的解集为C.
(1)求A∩B;(2)若C⊆∁RA,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若a+c=2b,则有(  )
A.60°≤B≤90°B.0°<B≤60°C.90°≤B≤120°D.120°≤B≤180°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设实数x,y满足不等式组$\left\{{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}}\right.$.若z=2x+y的最大值是最小值的3倍,则实数a的值是$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案