精英家教网 > 高中数学 > 题目详情
16.如图所示的直角坐标平面上有三点A(-1,1),B(1,-1),D(1,4).
(1)求满足等式x2$\overrightarrow{AB}$+x$\overrightarrow{AD}$=$\overrightarrow{DB}$的实数x;
(2)设向量$\overrightarrow{m}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$以A为始点,求其终点C的坐标并计算四边形ABCD的面积.

分析 (1)根据向量的坐标公式根据等式x2$\overrightarrow{AB}$+x$\overrightarrow{AD}$=$\overrightarrow{DB}$,建立方程关系即可求x;
(2)根据向量的基本定理建立方程关系即可求出C的坐标,结合三角形的面积公式进行求解即可.

解答 解:(1)∵A(-1,1),B(1,-1),D(1,4).
∴$\overrightarrow{AB}$=(2,-2),$\overrightarrow{AD}$=(2,3),$\overrightarrow{DB}$=(0,-5),
∵x2$\overrightarrow{AB}$+x$\overrightarrow{AD}$=$\overrightarrow{DB}$,
∴x2(2,-2)+x(2,3)=(0,-5),
即(2x2+2x,3x-2x2)=(0,-5),
则$\left\{\begin{array}{l}{2{x}^{2}+2x=0}\\{3x-2{x}^{2}=-5}\end{array}\right.$,即$\left\{\begin{array}{l}{x=0或x=-1}\\{x=-1或x=-\frac{5}{2}}\end{array}\right.$,解得x=-1.
(2)$\overrightarrow{m}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$=(2,-2)+(2,3)=(4,1)=$\overrightarrow{AC}$,
设C(x,y),则(x+1,y-1)=(4,1),
即$\left\{\begin{array}{l}{x+1=4}\\{y-1=1}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,即C(3,2).
∵$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,
∴四边形ABCD是平行四边形,
则BD=4-(-1)=5,A到BD的距离AE=1-(-1)=2,
则△ABD的面积S△ABD=$\frac{1}{2}AE•BD=\frac{1}{2}×2×5=5$,
则四边形ABCD的面积S=2S△ABD=2×5=10.

点评 本题主要考查平面向量的应用,要求熟练掌握向量的坐标公式以及坐标的基本运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.用秦九韶算法计算多项式f(x)=x5+4x4+3x3+2x2+1,当x=5的值时,乘法运算与加法运算的次数和为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=|x+1|的单调增区间是(  )
A.(-∞,+∞)B.(-∞,0)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示是一个程序框图,输出的结果是(  )
A.1616B.1617C.1716D.1717

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x2+ax+b(a,b∈R)的值域为[1,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的取值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x+1)的定义域是(0,1],则函数f(2sinx)的定义域为(2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.
(Ⅰ)求证:SB∥平面ACM;
(Ⅱ)求证:直线SC⊥平面AMN;
(Ⅲ)求几何体MANCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知一个圆的圆心是C(2,3),且经过原点.
(1)求这个圆的方程;
(2)过点A(4,0)作圆C的切线,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x∈R,sinx≤$\frac{1}{2}$,则(  )
A.¬p:?x∈R,sinx$≤\frac{1}{2}$B.¬p:?x∈R,sinx>$\frac{1}{2}$C.¬p:?x∈R,sinx$>\frac{1}{2}$D.¬p:?x∈R,sinx$≥\frac{1}{2}$

查看答案和解析>>

同步练习册答案