【题目】已知等差数列{an}的公差d>0,则下列四个命题: ①数列{an}是递增数列;
②数列{nan}是递增数列;
③数列 是递增数列;
④数列{an+3nd}是递增数列;
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
【答案】B
【解析】解:∵对于公差d>0的等差数列{an},an+1﹣an=d>0,∴数列{an}是递增数列成立,是真命题. 对于数列数列{nan},第n+1项与第n项的差等于 (n+1)an+1﹣nan=nd+an+1 , 不一定是正实数,故是假命题.
对于数列 ,第n+1项与第n项的差等于 ,不一定是正实数,故是假命题.
对于数列数列{an+3nd},第n+1项与第n项的差等于 an+1+3(n+1)d﹣an﹣3nd=4d>0,
故数列{an+3nd}是递增数列成立,是真命题.
故选:B.
【考点精析】解答此题的关键在于理解等差数列的性质的相关知识,掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列.
科目:高中数学 来源: 题型:
【题目】在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:
分组 | 频数 |
合计 |
(1)画出频率分布表,并画出频率分布直方图;
(2)估计纤度落在中的概率及纤度小于的概率是多少?
(3)从频率分布直方图估计出纤度的众数、中位数和平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为。
(1)求乙投球的命中率。
(2)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,求在不超过600个工时的条件下,生产产品A和产品B的利润之和的最大值(元).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.
(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com