分析 (1)通过x的范围以及二次函数的性质求出f(x)的值域即可;(2)求出函数的导数,从而求出函数的递减区间即可.
解答 解:(1)f(x)=$\frac{1}{{x}^{2}-4x+5}$=$\frac{1}{{(x-2)}^{2}+1}$,
x=2时,f(x)最大,最大值是1,x→∞时,f(x)→0,
故f(x)的值域为(0,1];
(2)f(x)=$\frac{1-x}{2x+5}$,f′(x)=$\frac{-(2x+5)-2(1-x)}{{(2x+5)}^{2}}$=-$\frac{7}{{(2x+5)}^{2}}$<0,
故f(x)的单调递减区间为(-∞,-$\frac{5}{2}$),(-$\frac{5}{2}$,+∞);
故答案为:(0,1],(-∞,-$\frac{5}{2}$),(-$\frac{5}{2}$,+∞).
点评 本题考查了函数的单调性、最值问题,考查求函数的值域问题,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
| A. | 99.5% | B. | 99.9% | C. | 97.5% | D. | 95% |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com