精英家教网 > 高中数学 > 题目详情
12.已知甲、乙两组数据如茎叶图所示,其中m∈(0,1,2,3,4,5,6,7,8,9),则甲的平均数不小于乙的平均数的概率为$\frac{3}{10}$.

分析 先分别求出甲、乙的平均数,从而得到m的值应该取5,6,7,8,9,由此求出甲的平均数不小于乙的平均数的概率.

解答 解:乙的平均数为:$\overline{{x}_{乙}}$=$\frac{1}{3}(19+21+26)$=22,
甲的平均数为:$\overline{{x}_{甲}}$=$\frac{1}{4}(10+m+20+23+28)$=$\frac{81+m}{4}$,
∵m∈(0,1,2,3,4,5,6,7,8,9),且甲的平均数不小于乙的平均数,
∴m的值应该取7,8,9,
∴甲的平均数不小于乙的平均数的概率p=$\frac{3}{10}$.
故答案为:$\frac{3}{10}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意茎叶图的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若f(x)在x0处连接,则下列命题中正确的是(  )
A.若f(x0)是f(x)的极值,则f(x)在x0处可导且f′(x0)=0
B.若曲线y=f(x)在x0附近的左侧切线斜率为正,右侧切线斜率为负,则f(x0)是f(x)的极大值
C.若曲线y=f(x)在x0附近的左侧切线斜率为负,右侧切线斜率为正,则f(x0)是f(x)的极大值
D.若f′(x0)=0,则f(x0)必是f(x)的极值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知全集为R,A=[1,+∞),B=(0,+∞),则(∁RA)∩B等于(  )
A.(-∞,0)B.(0,1)C.(0,1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{x}{3}$+sinx的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点O是△ABC外心,AB=4,AO=3,则$\overrightarrow{AB}$$•\overrightarrow{AC}$的取值范围是[-4,20].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某船开始看见灯塔在南偏东30°方向,船沿南偏东60°的方向航行30n mile后看见灯塔在正西方向,则这时船与灯塔的距离是(  )
A.10$\sqrt{3}$n  mileB.20$\sqrt{3}$n  mileC.10$\sqrt{2}$n  mileD.20$\sqrt{2}$n  mile

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某同学模仿数字通信,用相同长度“0”、“1”的不同组合来代表“0”到“9”和“A”到“Z”这36个数字和字母;要保证每个数字和字母的组合方式不同,长度至少为多少,才能完全描述出所有数字和字母(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线x2=2py(p>0).过点M(0,m)的直线抛物线交于A,B两点.又过A,B两点分别作抛物切线,两条切线相交于点P.
(1)求证:两条切线的斜率之积为定值;
(2)当p=m=4时.求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知${∫}_{0}^{t}$xdx=2,求t的值.

查看答案和解析>>

同步练习册答案