精英家教网 > 高中数学 > 题目详情
4.如图所示,直线l1的倾斜角α1=30°,直线l1与l2垂直,则直线l1,l2的斜率分别等于多少?

分析 由已知利用三角形的一个外角等于不相邻的两个内角和求得直线l2的倾斜角,再由三角函数的诱导公式及三角函数的值求得直线l1,l2的斜率.

解答 解:设直线l2的倾斜角为α2,由直线l1与l2垂直,可得α2=90°+α1
则直线l1的斜率${k}_{1}=tan{α}_{1}=tan30°=\frac{\sqrt{3}}{3}$,
直线l2的斜率k2=tanα2=tan(90°+α1)=-cotα1=-cot30°=-$\sqrt{3}$.

点评 本题考查了直线的斜率,考查了直线的斜率和倾斜角间的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.抛物线y2=x与直线x-2y-3=0所围成的封闭图形的面积为$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且a=$\sqrt{13}$,b=7,函数f(x)=$\frac{1}{2}$sin2xcosA-sinAsin2x(x∈R),且f(x)的最大值为$\frac{1}{4}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{an}中,已知a1=1,an=$\frac{2{S}_{n}^{2}}{2S{\;}_{n}-1}$(n≥2)其中Sn是数列{an}的前n项和,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知公比为2的等比数列{an}中存在两项am,an,使得aman=16a12,则$\frac{1}{m}+\frac{4}{n}$的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$\sqrt{3}$csinA=acosC.
(Ⅰ)求角C的大小;
(Ⅱ)当$\sqrt{3}$cosA+cosB取得最大值时,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数列2,3,5,8,x,21,…中的x等于(  )
A.11B.12C.13D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,算法流程图的输出结果为(  )
A.$\frac{3}{4}$B.$\frac{1}{6}$C.$\frac{11}{12}$D.$\frac{25}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,过其左焦点F作圆x2+y2=a2的两条切线,切点记作C,D,原点为O,∠COD=$\frac{2π}{3}$,其双曲线的离心率为(  )
A.$\frac{3}{2}$B.2C.$\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案