精英家教网 > 高中数学 > 题目详情

【题目】(2015·陕西)如图1,在直角梯形ABCD中,AD∥BC,BAD=,AB=BC=1,
AD=2, E是AD的中点,0是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.

(1)证明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE, 四棱锥A1-BCDE的体积为36,求a的值.

【答案】
(1)

见解析。


(2)

a=6


【解析】(I)在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD= π 2 , ∴BE⊥AC,
即在图2中,BE⊥OA1 , BE⊥OC,则BE⊥平面A1OC;∵CD∥BE,∴CD⊥平面A1OC;
(II)由已知,平面A1BE⊥平面BCDE,
且平面A1BE平面BCDE=BE
又由(I)知,A1O⊥BE,所以
A1O⊥平面BCDE,
即A1O是四棱锥A1-BCDE的高,
由图1可知,A1O=AB=a,平行四边形BCDE面积S=BC-AB=a2
从而四棱锥A1-BCDE的为
v=xSxA1O=xa2xa=a3
a3=36,得a=6.
【考点精析】解答此题的关键在于理解向量语言表述线面的垂直、平行关系的相关知识,掌握要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可;设直线的方向向量是,平面内的两个相交向量分别为,若

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于非空实数集A,定义对任意.设非空实数集.现给出以下命题:(1)对于任意给定符合题设条件的集合CD,必有;(2)对于任意给定符合题设条件的集合CD,必有;(3)对于任意给定符合题设条件的集合CD,必有;(4)对于任意给定符合题设条件的集合CD,必存在常数a,使得对任意的,恒有.以上命题正确的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P1P2P3P4P5的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.
(1)(I)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)  

乘客

P1

P2

P3

P4

P5

座位号

3

2

1

4

5

3

2

4

5

1


(2)(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)如图1,在直角梯形ABCD中,AD∥BC,BAD=,AB=BC=1,
AD=2, E是AD的中点,0是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.

(1)证明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE, 四棱锥A1-BCDE的体积为36,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)“sin=cos”是“cos2=0”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·江苏)如图,在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.

(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于AB两点,线段AB的垂直平分线分别交直线lAB于 点PC , 若PC=2AB , 求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点。

(1)证明:平面AEF⊥平面B1BCC1
(2)若直线AC1与平面AA1BB1所成的角为45°,求三棱锥F-AEC的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆市2013年各月的平均气温(℃)数据的茎叶图如下:

则这组数据的中位数是 ( )
A.19
B.20
C.21.5
D.23

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加. 现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(1)设为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件发生的概率
(2)设为选出的4人中种子选手的人数,求随机变量的分布列和数学期望

查看答案和解析>>

同步练习册答案