16£®Ä³µçÊǪ́Ϊµ÷²éÊÐÃñ¶Ô±¾Ì¨Ä³½ÚÄ¿µÄϲ°®ÊÇ·ñÓëÄêÁäÓйأ¬Ëæ»ú³éÈ¡ÁË100ÃûÊÐÃñ£¬ÆäÖÐÊÇ·ñϲ»¶¸Ã½ÚÄ¿µÄÈËÊýÈçͼËùʾ£º
ϲ»¶²»Ï²»¶ºÏ¼Æ
10ËêÖÁ30Ëêab60
30ËêÖÁ50Ëêcd40
ºÏ¼Æ7525100
£¨1£©Ð´³öÁбíÖÐa£¬b£¬c£¬dµÄÖµ£»
£¨2£©ÅжÏÊÇ·ñÓÐ99%µÄ°ÑÎÕÈÏΪϲ»¶¸Ã½ÚÄ¿ÓëÄêÁäÓйأ¬ËµÃ÷ÄãµÄÀíÓÉ£»
£¨3£©Ïּƻ®ÔÚÕâ´Îµ÷²éÖа´ÄêÁä¶ÎÓ÷ֲã³éÑùµÄ·½·¨Ñ¡È¡5ÃûÊÐÃñ£¬²¢´ÓÖгéÈ¡2ÃûÐÒÔËÊÐÃñ£¬Çó2ÃûÐÒÔËÊÐÃñÖÐÖÁÉÙÓÐÒ»ÈËÔÚ30-50ËêÖ®¼äµÄ¸ÅÂÊ£®
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
£¨²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨a+c£©£¨c+d£©£¨d+b£©}$£¬ÆäÖÐn=a+b+c+d£®

·ÖÎö £¨1£©¼ÆËãa¡¢b¡¢c¡¢dµÄÖµ£¬ÌîдÁÐÁª±í¼´¿É£»
£¨2£©¼ÆËã¹Û²âÖµK2£¬Í¨¹ý±íÖÐÊý¾ÝµÃ³ö¸ÅÂʽáÂÛ£»
£¨3£©ÀûÓ÷ֲã³éÑùÔ­ÀíÇó³ö¡°10Ëê¡«30ËꡱÓë¡°30Ëê¡«50ËꡱµÄÊÐÃñÈËÊý£¬ÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þÊý£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂʼ´¿É£®

½â´ð ½â£º£¨1£©a=50£¬b=10£¬c=25£¬d=15£»Ìî±íÈçÏ£º

ϲ»¶²»Ï²»¶ºÏ¼Æ
10ËêÖÁ30Ëê501060
30ËêÖÁ50Ëê251540
ºÏ¼Æ7525100
£¨2£©Ã»ÓÐ99%µÄ°ÑÎÕÈÏΪϲ»¶¸Ã½ÚÄ¿ÓëÄêÁäÓйأ¬ÀíÓÉÈçÏ£»
K2=$\frac{10{0£¨50¡Á15-25¡Á10£©}^{2}}{75¡Á25¡Á60¡Á40}$¡Ö5.56£¼6.635£¬
ÓÖP£¨K2¡Ý6.635£©=0.01£¬
ËùÒÔP£¨K2¡Ö5.56£©£¾0.01£¬ËùÒÔ1-P£¨K2¡Ö5.56£©£¼0.99£¬
¹ÊûÓÐ99%µÄ°ÑÎÕÈÏΪϲ»¶¸Ã½ÚÄ¿ÓëÄêÁäÓйأ»
£¨3£©ÉèËù³éµÄ5ÃûÊÐÃñÖÐÓÐmÃû¡°10Ëê¡«30ËꡱµÄÊÐÃñ£¬Ôò
$\frac{m}{60}$=$\frac{5}{100}$£¬½âµÃm=3£¬
ËùÒÔ5ÃûÊÐÃñÖÐÓÐ3Ãû¡°10Ëê¡«30ËꡱµÄÊÐÃñ£¬2Ãû¡°30Ëê¡«50ËꡱµÄÊÐÃñ£¬
·Ö±ð¼ÇΪa¡¢b¡¢c¡¢D¡¢E£¬´ÓÖÐÈÎÑ¡2Ãû£¬»ù±¾Ê¼þÓÐ
ab£¬ac£¬aD£¬aE£¬bc£¬bD£¬bE£¬cD£¬cE£¬DE¹²10¸ö£¬
ÆäÖÐ2ÃûÊÐÃñÖÐÖÁÉÙÓÐ1ÃûÔÚ30-50ËêÖ®¼äʼþΪ
aD£¬aE£¬bD£¬bE£¬cD£¬cE£¬DE¹²7¸ö£¬
ËùÒÔ2ÃûÐÒÔËÊÐÃñÖÐÖÁÉÙÓÐ1ÈËÔÚ30-50ËêÖ®¼äµÄ¸ÅÂÊΪP=$\frac{7}{10}$£®

µãÆÀ ±¾Ì⿼²éÁ˶ÔÁ¢ÐÔ¼ìÑéÎÊÌ⣬Ҳ¿¼²éÁËÓÃÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªa£¬bÊÇʵÊý£¬b£¾0£¬º¯Êýf£¨x£©=1+asinbxµÄͼÏóÈçͼËùʾ£¬Ôò·ûºÏÌõ¼þµÄº¯Êýy=loga£¨x+b£©µÄͼÏó¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®A£¬B·Ö±ðÊÇy=kxºÍ$y=-\frac{1}{k}x$ÓëÍÖÔ²$\frac{x^2}{2}+{y^2}=1$µÄ½»µã£¬µãPÔÚÏß¶ÎABÉÏ£¬ÇÒ$\overrightarrow{OA}•\overrightarrow{OP}=\overrightarrow{OB}•\overrightarrow{OP}$£¬µ±k±ä»¯Ê±£¬µãPÒ»¶¨ÔÚ£¨¡¡¡¡£©
A£®Ë«ÇúÏßx2-2y2=1ÉÏB£®ÍÖÔ²${x^2}+\frac{y^2}{2}=1$ÉÏ
C£®Ô²${x^2}+{y^2}=\frac{1}{3}$ÉÏD£®Ô²${x^2}+{y^2}=\frac{2}{3}$ÉÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÃüÌâ¡°¿Õ¼äÁ½Ö±Ïßa£¬b»¥ÏàÆ½ÐС±³ÉÁ¢µÄ³ä·ÖÌõ¼þÊÇ£¨¡¡¡¡£©
A£®Ö±Ïßa£¬b¶¼Æ½ÐÐÓÚͬһ¸öÆ½ÃæB£®Ö±ÏßaƽÐÐÓÚÖ±ÏßbËùÔ򵀮½Ãæ
C£®Ö±Ïßa£¬b¶¼´¹Ö±ÓÚͬһÌõÖ±ÏßD£®Ö±Ïßa£¬b¶¼´¹Ö±ÓÚͬһ¸öÆ½Ãæ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{m}$=1µÄÒ»Ìõ½¥½üÏßµÄбÂʵÄȡֵ·¶Î§Îª£¨$\frac{\sqrt{3}}{2}$£¬$\frac{\sqrt{5}}{2}$£©£¬Çó½¹µãÔÚxÖáÉϵÄÍÖÔ²$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1µÄÀëÐÄÂÊeµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®É輯ºÏA={x|1£¼x£¼2}£¬B={x|x¡Üa}£¬ÈôA⊆B£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®a¡Ý2B£®a£¾2C£®a¡Ý1D£®a£¾1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÁ½ÌõÖ±Ïßa£¬bºÍÆ½Ãæ¦Á£¬Èôa¡Íb£¬b?¦Á£¬Ôò¡°a¡Í¦Á¡±ÊÇ¡°b¡Î¦Á¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³Ð£Ëæ»ú³éÈ¡100ÃûѧÉúµ÷²éº®¼ÙÆÚ¼äѧÉúƽ¾ùÿÌìµÄѧϰʱ¼ä£¬±»µ÷²éµÄѧÉúÿÌìÓÃÓÚѧϰµÄʱ¼ä½éÓÚ1СʱºÍ11Сʱ֮¼ä£¬°´Ñ§ÉúµÄѧϰʱ¼ä·Ö³É5×飺µÚÒ»×é[1£¬3£©£¬µÚ¶þ×é[3£¬5£©£¬µÚÈý×é[5£¬7£©£¬µÚËÄ×é[7£¬9£©£¬µÚÎå×é[9£¬11]£¬»æÖƳÉÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨¢ñ£©Çóѧϰʱ¼äÔÚ[7£¬9£©µÄѧÉúÈËÊý£»
£¨¢ò£©ÏÖÒª´ÓµÚÈý×é¡¢µÚËÄ×éÖÐÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡6ÈË£¬´ÓÕâ6ÈËÖÐËæ»ú³éÈ¡2È˽»Á÷ѧϰÐĵã¬ÇóÕâ2ÈËÖÐÖÁÉÙÓÐ1È˵Äѧϰʱ¼äÔÚµÚËÄ×éµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èô¸´ÊýzÂú×ãzi=1+i£¬ÔòzµÄ¹²éÊýÊÇ£¨¡¡¡¡£©
A£®-1-iB£®1+iC£®-1+iD£®1-i

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸