精英家教网 > 高中数学 > 题目详情
15.曲线$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=2si{n}^{2}θ}\end{array}\right.$(θ为参数)的普通方程是2x+y-2=0,x∈[0,1].

分析 由已知中$\left\{\begin{array}{l}x=co{s}^{2}θ\\ y=2si{n}^{2}θ\end{array}\right.$可得:$\left\{\begin{array}{l}x=co{s}^{2}θ\\ \frac{1}{2}y=si{n}^{2}θ\end{array}\right.$,相加可得曲线的普通方程.

解答 解:∵$\left\{\begin{array}{l}x=co{s}^{2}θ\\ y=2si{n}^{2}θ\end{array}\right.$,
∴$\left\{\begin{array}{l}x=co{s}^{2}θ\\ \frac{1}{2}y=si{n}^{2}θ\end{array}\right.$,
两式相回得:x+$\frac{1}{2}y$=1,
即2x+y-2=0,
又由x=cos2θ∈[0,1]得:
曲线$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=2si{n}^{2}θ}\end{array}\right.$(θ为参数)的普通方程是2x+y-2=0,x∈[0,1],
故答案为:2x+y-2=0,x∈[0,1]

点评 本题考查的知识点参数方程与普通方程的互化,要注意x的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx.
(1)若f(x)≤ax在x>0时恒成立,求实数a的取值范围;
(2)证明:$\frac{x}{1+x}$≤f(x+1)在x>-1时恒成立;
(3)设n∈N*,证明:$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n+1}$<ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\frac{A}{2}$-$\frac{A}{2}$cos2(ωx+φ),(A>0,ω>0,0<φ<$\frac{π}{2})$的图象过点(1,2),相邻两条对称轴间的距离为2,且f(x)的最大值为2.则f(1)+f(2)+…+f(2016)=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合.曲线C的参数方程为$\left\{\begin{array}{l}{x=3cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),直线l的极坐标方程是ρ(cosθ+2sinθ)=15.若点P、Q分别是曲线C和直线l上的动点,则P、Q两点之间距离的最小值是(  )
A.$\sqrt{10}$B.2$\sqrt{3}$C.2$\sqrt{5}$D.$\sqrt{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(1-$\frac{1}{x}$)(1+x)5的展开式中项x3的系数为(  )
A.7B.8C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图是一个面积为1的三角形,现进行如下操作.第一次操作:分别连结这个三角形三边的中点,构成4个三角形,挖去中间一个三角形(如图①中阴影部分所示),并在挖去的三角形上贴上数字标签“1”;第二次操作:连结剩余的三个三角形三边的中点,再挖去各自中间的三角形(如图②中阴影部分所示),同时在挖去的3个三角形上都贴上数字标签“2”;第三次操作:连结剩余的各三角形三边的中点,再挖去各自中间的三角形,同时在挖去的三角形上都贴上数字标签“3”;…,如此下去.记第n次操作中挖去的三角形个数为an.如a1=1,a2=3.

(1)求an
(2)求第n次操作后,挖去的所有三角形面积之和Pn
(3)求第n次操作后,挖去的所有三角形上所贴标签上的数字和Qn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)-ex]=e+1(e是自然对数的底数),则方程f(x)-x-2=0的解的个数为(  )个.
A.1B.0C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{{9}^{x}-a}{{3}^{x}}$的图象关于原点对称,则a=(  )
A.1B.-1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$=(k,3),$\overrightarrow{b}$=(1,4),$\overrightarrow{c}$=(2,1)且(3$\overrightarrow{a}$-2$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则实数k=(  )
A.-$\frac{9}{2}$B.0C.3D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案