| A. | -$\frac{9}{2}$ | B. | 0 | C. | 3 | D. | $\frac{1}{2}$ |
分析 根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.
解答 解:∵向量$\overrightarrow{a}$=(k,3),$\overrightarrow{b}$=(1,4),
∴3$\overrightarrow{a}$-2$\overrightarrow{b}$=(3k-2,1),又$\overrightarrow{c}$=(2,1)且(3$\overrightarrow{a}$-2$\overrightarrow{b}$)⊥$\overrightarrow{c}$,
∴(3k-2)×2+1×1=0,即$k=\frac{1}{2}$.
故选:D.
点评 本题考查平面向量数量积的运算,考查数量积的坐标形式,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$ | B. | -$\frac{1}{2}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=|x| | B. | y=x2+1 | C. | y=x3 | D. | y=sinx(x∈[0,$\frac{π}{2}$]) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-2)<f(π)<f(-3) | B. | f(π)<f(-2)<f(-3) | C. | f(-2)<f(-3)<f(π) | D. | f(-3)<f(-2)<f(π) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com