精英家教网 > 高中数学 > 题目详情
15.如果不等式ax2+bx+c>0的解集为{x|-2<x<4},那么对于函数f(x)=ax2+bx+c应有(  )
A.f(5)<f(2)<f(-1)B.f(-1)<f(5)<f(2)C.f(2)<f(-1)<f(5)D.f(5)<f(-1)<f(2)

分析 不等式ax2+bx+c>0的解集为{x|-2<x<4},可得:a<0,-2,4是ax2+bx+c=0的两个实数根,利用根与系数的关系可得:函数f(x)=ax2+bx+c=a(x2-2x-8)=a(x-1)2-9a,(a<0).再利用二次函数的图象与性质即可得出.

解答 解:∵不等式ax2+bx+c>0的解集为{x|-2<x<4},
∴a<0,-2,4是ax2+bx+c=0的两个实数根,
∴-2+4=-$\frac{b}{a}$,-2×4=$\frac{c}{a}$.
那么对于函数f(x)=ax2+bx+c=a(x2-2x-8)=a(x-1)2-9a,(a<0).
此抛物线开口向下,其图象关系直线x=1对称,
∴f(-1)=f(3),f(2)>f(3)>f(5),
∴f(2)>f(-1)>f(5),
故选:D.

点评 本题考查了二次函数的图象与性质、“三个二次”的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=2,则函数y=f(x)-|log3x|的零点个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在三棱锥S-ABC中,E,F分别为SB,SC上的点,且EF∥面ABC,则(  )
A.EF与BC相交B.EF∥BCC.EF与BC异面D.以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{{\begin{array}{l}{({2a-1})x+2a,x<1}\\{{{log}_a}x,x≥1}\end{array}}\right.$是R上的减函数,则实数a的取值范围是(  )
A.$(0,\frac{1}{2})$B.[$\frac{1}{4},\frac{1}{2}$)C.($\frac{1}{4},\frac{1}{2}$)D.($0,\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角α的终边与圆心为原点的圆交于点P(1,2),那么sin2α的值是(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“a=2”是“a≥1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分不要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个四棱锥的底面为正方形,其三视图如图所示,其中主视图和左视图均为等腰三角形,俯视图是一个正方形,则这个四棱锥的体积是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=x2+2x+1.
(1)求y=f(x)的图象与两坐标所围成图形的面积;
(2)若直线x=-t(0<t<1)等于y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下面有四个结论:
①第一项起乘相同常数得后一项,这样所得到的数列一定为等比数列;
②常数列b,b,b,…,b一定为等比数列;
③等比数列{an}中,若公比q=1,则此数列各项相等;
④在等比数列中,各项与公比都不为零.
正确说法的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案