分析 (1)连接EF,利用中位线定理得出EF∥PB,故而PB∥平面AEC;
(2)由PA⊥平面ABCD得PA⊥BD,结合AC⊥BD可得BD⊥平面PAC,故而平面PAC⊥平面PBD.
解答
解:(1)证明:连接EF,
∵四边形ABCD是菱形,
∴F是BD的中点,又E是PD的中点,
∴PB∥EF,又EF?平面AEC,PB?平面AEC,
∴PB∥平面AEC;
(2)∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD,
∵四边形ABCD是菱形,∴BD⊥AC,
又AC?平面PAC,PA?平面PAC,AC∩PA=A,
∴BD⊥平面PAC,又∵BD?平面PBD,
∴平面PAC⊥平面PBD.
点评 本题考查了线面平行,面面垂直的判定,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=\sqrt{2}sin(\frac{1}{2}x+\frac{π}{3})$ | B. | $f(x)=\sqrt{2}sin(2x+\frac{π}{3})$ | C. | $f(x)=\sqrt{2}sin(2x+\frac{π}{6})$ | D. | $f(x)=\sqrt{2}sin(\frac{1}{2}x+\frac{π}{6})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 无解 | B. | 有一解 | C. | 有两解 | D. | 有无数个解 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,n∥α,则m∥n | B. | 若m⊥α,m⊥n,则n∥α | ||
| C. | 若m⊥α,n⊥α,则m∥n | D. | 若m∥α,m⊥n,则 n⊥α |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com