精英家教网 > 高中数学 > 题目详情
19.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)的解析式为(  )
A.$f(x)=\sqrt{2}sin(\frac{1}{2}x+\frac{π}{3})$B.$f(x)=\sqrt{2}sin(2x+\frac{π}{3})$C.$f(x)=\sqrt{2}sin(2x+\frac{π}{6})$D.$f(x)=\sqrt{2}sin(\frac{1}{2}x+\frac{π}{6})$

分析 根据函数图象求得函数的最小值为$\sqrt{2}$,求得A=$\sqrt{2}$,$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,根据周期公式求得ω的值,将点($\frac{π}{3}$,0)代入f(x)=$\sqrt{2}$sin(2x+φ),根据φ的取值范围,求得φ的值,求得函数解析式.

解答 解:由函数图象可知:A=$\sqrt{2}$,
由正弦函数图象可知:$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,
∴T=π,
ω=$\frac{2π}{T}$=2,
将点($\frac{π}{3}$,0)代入f(x)=$\sqrt{2}$sin(2x+φ),
即2×$\frac{π}{3}$+φ=kπ,k∈Z,
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴$\frac{π}{2}$f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$),
故答案选:B.

点评 本题考查的知识点正弦型函数解析式的求法,其中关键是要根据图象分析出函数的最值,周期等,进而求出A,ω和φ值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,已知a=2,c=7,且sinC:sinB=7$\sqrt{3}$:9,求最大角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设a是实数,M={x|x∈R,x2-2ax+a2-1≤0},N={x|x∈R,1-a2≤x≤1+a2},若M是N的真子集,则a的取值范围是(-∞,-2]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知y=f(x)是定义在R上的奇函数,且f(x)=$\left\{\begin{array}{l}{(x+2)^{2}-1,x<-1}\\{0,-1≤x≤0}\end{array}\right.$,当函数y=f(x-1)-$\frac{1}{2}$-k(x-2)(其中k>0)的零点个数取得最大值时,则实数k的数值范围是(  )
A.(0,6-$\sqrt{30}$)B.(6-$\sqrt{30}$,2$-\sqrt{2}$)C.($\frac{1}{4}$,6-$\sqrt{30}$)D.($\frac{1}{4}$,2-$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个总体分为A、B两层,用分层抽样法从总体中抽取容量为10的样本,已知B层中个体甲被抽到的概率是$\frac{1}{10}$,则总体中的个体数是100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数列{an}的前n项和为Sn,且Sn=2n-1,则数列{an2}的前n项和Tn为$\frac{{4}^{n}-1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.复数$\frac{3+i}{i^2}$(i为虚数单位)的虚部等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点,F为AC和BD的交点.
(1)证明:PB∥平面AEC;
(2)证明:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将5封信投入3个邮箱,每个邮箱至少投1封,不同的投法有(  )
A.125种B.81种C.150种D.240种

查看答案和解析>>

同步练习册答案