分析 (Ⅰ)求出导函数f′(x).利用f′(0)=a+b=0,f(e-1)=e2-e+1,即可求解a,b.
(Ⅱ)设g(x)=(x+1)2ln(x+1)-x-x2,(x≥0),求出导函数,利用导函数的判断函数的单调性,推出g(x)≥g(0)=0.推出结果f(x)≥x2.
(Ⅲ)设h(x)=(x+1)2ln(x+1)-x-mx2,求出导函数h′(x),利用(Ⅱ) 中的结果,通过讨论m的范围,求解即可.
解答 解:(Ⅰ)f′(x)=2a(x+1)ln(x+1)+a(x+1)+b,∵f′(0)=a+b=0,f(e-1)=ae2+b(e-1)=a(e2-e+1)=e2-e+1∴a=1,b=-1. …(4分)
(Ⅱ)f(x)=(x+1)2ln(x+1)-x,
设g(x)=(x+1)2ln(x+1)-x-x2,(x≥0),g′(x)=2(x+1)ln(x+1)-x,
(g′(x))′=2ln(x+1)+1>0,∴g′(x)在[0,+∞)上单调递增,
∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,
∴g(x)≥g(0)=0.∴f(x)≥x2.…(8分)
(Ⅲ)设h(x)=(x+1)2ln(x+1)-x-mx2,h′(x)=2(x+1)ln(x+1)+x-2mx,
(Ⅱ) 中知(x+1)2ln(x+1)≥x2+x=x(x+1),∴(x+1)ln(x+1)≥x,∴h′(x)≥3x-2mx,
①当3-2m≥0即$m≤\frac{3}{2}$时,h′(x)≥0,∴h(x)在[0,+∞)单调递增,∴h(x)≥h(0)=0,成立.
②当3-2m<0即$m>\frac{3}{2}$时,h′(x)=2(x+1)ln(x+1)+(1-2m)x,h′′(x)=2ln(x+1)+3-2m,令h′′(x)=0,得${x_0}={e^{\frac{2m-3}{2}}}-1>0$,
当x∈[0,x0)时,h′(x)<h′(0)=0,∴h(x)在[0,x0)上单调递减,
∴h(x)<h(0)=0,不成立.
综上,$m≤\frac{3}{2}$.…(12分)
点评 本题考查函数的导数的综合应用,函数的单调性以及导函数的单调性的应用,考查分析问题解决问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | 充分但不必要条件 | B. | 必要但不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{5}$与$\frac{{\sqrt{3}}}{2}$ | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com