精英家教网 > 高中数学 > 题目详情
4.已知矩形ABCD的边AB=a,BC=3,PA⊥平面ABCD,若BC边上有且只有一点M,使PM⊥DM,则a的值为1.5.

分析 连结AM,根据条件,要使PM⊥MD,则DM⊥面PAM,即DM⊥AM即可.然后利用圆的性质,只要保证以AB为直径的圆和BC相切即可.

解答 解:∵PA⊥平面ABCD,
∴PA⊥DM,
若BC边上存在点M,使PM⊥MD,
则DM⊥面PAM,
即DM⊥AM,
∴以AD为直径的圆和BC相交即可.
∵AD=BC=3,
∴圆的半径为3,
要使线段BC和半径为3的圆相切,
则AB=1.5,
即a=1.5,
∴a的值是1.5.
故答案为:1.5.

点评 本题主要考查线面垂直的性质的应用,将线面垂直转化为直线垂直进而利用圆的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设等比数列{an}的前n项和为Sn,a3=$\frac{1}{8}$,且S2+$\frac{1}{16}$,S3,S4成等差数列,数列{bn}满足bn=8n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设Sn为等差数列{an}的前n项和,给出四个结论:
(1)a2+a8≠a10
(2)Sn=an2+bn(a≠0)
(3)若m,n,p,q∈N+,则am+an=ap+aq的充要条件是m+n=p+q
(4)若S6=S11,则a9=0
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=a(x+1)2ln(x+1)+bx(x>-1),曲线y=f(x)过点(e-1,e2-e+1),且在点(0,0)处的切线方程为y=0.
(Ⅰ)求a,b的值;
(Ⅱ)证明:当x≥0时,f(x)≥x2
(Ⅲ)若当x≥0时,f(x)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:
①若m?α,l∩α=A,点A∉m,则l与m不共面;
②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
③若l∥α,m∥β,α∥β,则l∥m;
④若l?α,m?α,l∩m=A,l∥β,m∥β,则α∥β,
其中为真命题的是(  )
A.①③④B.②③④C.①②④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=Asin(ωx+φ),(0<φ<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.A=2,φ=$\frac{π}{4}$B.A=2,φ=$\frac{π}{6}$C.A=2$\sqrt{2}$,φ=$\frac{π}{3}$D.A=2$\sqrt{2}$,φ=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆C的方程为(x-3)2+(y-4)2=1,过直线l:3x+ay-5=0(a>0)上的任意一点作圆C的切线,若切线长的最小值为$\sqrt{15}$,则直线l的斜率为$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设不等式组$\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤1}\end{array}\right.$表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离小于2的概率是(  )
A.$\frac{π}{4}$B.$\frac{π-\sqrt{3}}{6}$C.$\frac{\sqrt{3}+3π}{12}$D.$\frac{3\sqrt{3}+2π}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足条件$\left\{\begin{array}{l}{x+2y-5≤0}\\{x+y-3≥0}\\{y-1≥0}\end{array}\right.$,则目标函数z=$\frac{y}{x}$+$\frac{x}{y}$的取值范围为(  )
A.[2,$\frac{5}{2}$]B.[$\frac{5}{2}$,$\frac{10}{3}$]C.[2,$\frac{10}{3}$]D.[$\frac{1}{3}$,2]

查看答案和解析>>

同步练习册答案