精英家教网 > 高中数学 > 题目详情
9.函数f(x)=Asin(ωx+φ),(0<φ<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.A=2,φ=$\frac{π}{4}$B.A=2,φ=$\frac{π}{6}$C.A=2$\sqrt{2}$,φ=$\frac{π}{3}$D.A=2$\sqrt{2}$,φ=$\frac{π}{6}$

分析 由函数的最值求得A,根据特殊点的坐标求出φ的值,可得结论.

解答 解:由函数f(x)=Asin(ωx+φ),(0<φ<$\frac{π}{2}$)的部分图象可得A=2,
再把(0,$\sqrt{2}$)代入,可得2sinφ=$\sqrt{2}$,即sinφ=$\frac{\sqrt{2}}{2}$,∴φ=$\frac{π}{4}$,
故选:A.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求得A,根据特殊点的坐标求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知复数z=3+4i,$\overline{z}$对应点B,点A、C满足$\overrightarrow{OA}$-$\overrightarrow{BA}$=$\overrightarrow{OC}$.
(1)求点C的坐标;
(2)若点C在角α的终边上,求sin2α+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=|$\overrightarrow b$|=1,$\overrightarrow a$•$\overrightarrow b$=-$\frac{1}{2}$,则|$\overrightarrow a$+2$\overrightarrow b$|=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,y),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知矩形ABCD的边AB=a,BC=3,PA⊥平面ABCD,若BC边上有且只有一点M,使PM⊥DM,则a的值为1.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若变量x,y满足条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0,则z=2x-y}\\{x+y-5<0}\end{array}\right.$的取值范围为(  )
A.[-2,4]B.(-2,4]C.[-2,4)D.(-2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数m是2,8的等比中项,则圆锥曲线x2+$\frac{y^2}{m}$=1的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{5}$C.$\sqrt{5}$与$\frac{{\sqrt{3}}}{2}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱锥P-ABC中,PB⊥平面ABC,∠BCA=90°,PB=BC=CA=4,E为PC的中点,M为AB的中点,点F在PA上,且AF=2FP
(1)求证:平面BEF⊥平面PAC
(2)求三棱锥M-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\frac{1}{2}$sin(π-2x)-1=cos2x(0<x<π),则tan2x=$-\frac{4}{3}$.

查看答案和解析>>

同步练习册答案