精英家教网 > 高中数学 > 题目详情
14.若变量x,y满足条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0,则z=2x-y}\\{x+y-5<0}\end{array}\right.$的取值范围为(  )
A.[-2,4]B.(-2,4]C.[-2,4)D.(-2,4)

分析 作出不等式组对应的平面区域,利用目标函数z的几何意义,进行平移,结合图象得到z=2x-y的取值范围.

解答 解:由z=2x-y得y=2x-z,
作出不等式对应的平面区域(阴影部分)如图:
平移直线y=2x-z,由图象可知当直线y=2x-z和2x-y+2=0重合时,截距最大,此时z最小-2.
当直线y=2x-z经过点C时,直线y=2x-z的截距最小,此时z最大.
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-5=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,即C(3,2),
所以z的最大值为z=2×3-2=4,但此时取不到最大值,
故-2≤z<4,
故选:C

点评 本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知等式f(θ)=$\frac{\sqrt{3}(cosθ-sinθ)}{sinθ+cosθ}$.
(1)求f(θ)的最小正周期;
(2)当f(θ)=$\sqrt{3}$时,θ的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex
(Ⅰ)当f(x)≥ex+a对任意的实数x恒成立,求a的取值范围;
(Ⅱ)若a<b,a,b∈R,求证:$\frac{f(b)-f(a)}{b-a}$<$\frac{1}{2}$[$\frac{f(a)+f(b)}{2}$+f($\frac{a+b}{2}$)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足(an+1-1)(an-1)=3(an-an+1),a1=2,令${b_n}=\frac{1}{{{a_n}-1}}$.
(Ⅰ)证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=Asin(ωx+φ),(0<φ<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.A=2,φ=$\frac{π}{4}$B.A=2,φ=$\frac{π}{6}$C.A=2$\sqrt{2}$,φ=$\frac{π}{3}$D.A=2$\sqrt{2}$,φ=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在三角形ABC中,a,b,c分别是角A,B,C的对边,S是其面积,若2S=$\sqrt{3}$$\overrightarrow{AB}$•$\overrightarrow{BC}$.
(1)求∠B的大小;
(2)若S=3$\sqrt{3}$,三角形周长为6+4$\sqrt{3}$,求三角形各边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过点P(-2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有(  )
A.3条B.2条C.1条D.0条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数11100-1的末尾连续出现零的个数是3.

查看答案和解析>>

同步练习册答案