| A. | π | B. | 2π | C. | 3π | D. | 4π |
分析 过圆锥的旋转轴作轴截面,得△ABC及其内切圆⊙O1和外切圆⊙O2,且两圆同圆心,即△ABC的内心与外心重合,易得△ABC为正三角形,由题意⊙O1的半径为r=1,进而求出圆锥的底面半径和高,代入圆锥体积公式,可得答案.
解答 解:过圆锥的旋转轴作轴截面,得△ABC及其内切圆⊙O1和外切圆⊙O2,
且两圆同圆心,即△ABC的内心与外心重合,易得△ABC为正三角形,
由题意⊙O1的半径为r=1,
∴△ABC的边长为2$\sqrt{3}$,
∴圆锥的底面半径为$\sqrt{3}$,高为3,
∴V=$\frac{1}{3}×π×3×3=3π$.
故选:C.
点评 本题考查的知识点是旋转体,圆锥的体积,其中根据已知分析出圆锥的底面半径和高,是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,4] | B. | (-2,4] | C. | [-2,4) | D. | (-2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 44 | B. | 45 | C. | $\frac{1}{3}$(46-1) | D. | $\frac{1}{4}$(45-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 13 | C. | 14 | D. | 144 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 2+$\sqrt{3}$ | D. | 2-$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com