分析 (1)要证平面BEF⊥平面PAC,可证平面BEF经过平面PAC的一条垂线,关键是证明BE垂直于平面PAC,
由PB⊥平面ABC得到PB⊥AC,再由已知BC⊥AC,结合线面垂直的判断得到AC⊥平面PBC,即有AC⊥BE,
又由已知得到BE⊥PC,则BE⊥面PAC;
(2)由S△AEF=S△PAC-S△ACE-S△PEF求出三角形AEF的面积,利用等积法把三棱锥M-BEF的体积转化为三棱锥B-AEF的体积求解.
解答 (1)证明:如图,
∵PB⊥平面ABC,∴PB⊥AC,
又∵BC⊥AC,且PB∩BC=B,
∴AC⊥平面PBC,∴AC⊥BE,
又∵PB=BC,E为PC中点,∴BE⊥PC,则BE⊥面PAC.
∴面BEF⊥面PAC;
(2)解:在三角形PAC中,$PC=4\sqrt{2},CA=4,PA=4\sqrt{3}$,
∴∠PCA=90°,
∵S△AEF=S△PAC-S△ACE-S△PEF=$\frac{8}{3}\sqrt{2}$,
又∵BE=2$\sqrt{2}$是三棱锥B-AEF的高,
∴${V}_{M-BEF}=\frac{1}{2}{V}_{A-BEF}=\frac{1}{2}{V}_{B-AEF}$
=$\frac{1}{2}×\frac{1}{3}{S}_{△AEF}•BE=\frac{1}{2}•\frac{1}{3}•\frac{8\sqrt{2}}{3}•2\sqrt{2}=\frac{16}{9}$.
点评 本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | A=2,φ=$\frac{π}{4}$ | B. | A=2,φ=$\frac{π}{6}$ | C. | A=2$\sqrt{2}$,φ=$\frac{π}{3}$ | D. | A=2$\sqrt{2}$,φ=$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π-\sqrt{3}}{6}$ | C. | $\frac{\sqrt{3}+3π}{12}$ | D. | $\frac{3\sqrt{3}+2π}{18}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com