精英家教网 > 高中数学 > 题目详情
17.设平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,y),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=5.

分析 由向量垂直的条件:数量积为0,可得y=1,再由向量的模的公式和向量的模的平方即为向量的平方,计算即可得到.

解答 解:平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,y),
若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=0,
即有-2+2y=0,
解得y=1,
即有|$\overrightarrow{a}$|=$\sqrt{5}$,|$\overrightarrow{b}$|=$\sqrt{5}$,
则|2$\overrightarrow{a}$-$\overrightarrow{b}$|2=(2$\overrightarrow{a}$-$\overrightarrow{b}$)2=4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$
=4×5-4×0+5=25,
则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=5.
故答案为:5.

点评 本题考查向量的数量积的坐标表示和性质,主要考查向量的平方即为模的平方,以及向量垂直的条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知x,y,z,a∈R,且x2+4y2+z2=6,则使不等式x+2y+3z≤a恒成立的a的最小值为(  )
A.6B.$\sqrt{66}$C.8D.$\sqrt{88}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则$|{\frac{z_2}{z_1}}|$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex
(Ⅰ)当f(x)≥ex+a对任意的实数x恒成立,求a的取值范围;
(Ⅱ)若a<b,a,b∈R,求证:$\frac{f(b)-f(a)}{b-a}$<$\frac{1}{2}$[$\frac{f(a)+f(b)}{2}$+f($\frac{a+b}{2}$)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=a(x+1)2ln(x+1)+bx(x>-1),曲线y=f(x)过点(e-1,e2-e+1),且在点(0,0)处的切线方程为y=0.
(Ⅰ)求a,b的值;
(Ⅱ)证明:当x≥0时,f(x)≥x2
(Ⅲ)若当x≥0时,f(x)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足(an+1-1)(an-1)=3(an-an+1),a1=2,令${b_n}=\frac{1}{{{a_n}-1}}$.
(Ⅰ)证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=Asin(ωx+φ),(0<φ<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.A=2,φ=$\frac{π}{4}$B.A=2,φ=$\frac{π}{6}$C.A=2$\sqrt{2}$,φ=$\frac{π}{3}$D.A=2$\sqrt{2}$,φ=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过点P(-2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有(  )
A.3条B.2条C.1条D.0条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}中,a1=1,an+1=an+n,若利用如图所示的程序框图计算该数列的第10项的值S,则判断框内的条件是n≤9或n<10.

查看答案和解析>>

同步练习册答案