精英家教网 > 高中数学 > 题目详情
8.设等比数列{an}的前n项和为Sn,a3=$\frac{1}{8}$,且S2+$\frac{1}{16}$,S3,S4成等差数列,数列{bn}满足bn=8n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn

分析 (Ⅰ)记数列{an}的公比为q,则2S3=S2+$\frac{1}{16}$+S4,即${a}_{3}={a}_{4}+\frac{1}{16}$,又由a3=$\frac{1}{8}$,知a4=$\frac{1}{16}$,从而q=$\frac{1}{2}$,根据公式即得结果;
(Ⅱ)当bn=8n时,an•bn=$(\frac{1}{2})^{n}$•8n,计算出Tn、$\frac{1}{2}•$Tn,两式相减即得结论Tn

解答 解:(Ⅰ)记数列{an}的公比为q,由S2+$\frac{1}{16}$,S3,S4成等差数列,
可知2S3=S2+$\frac{1}{16}$+S4,即${a}_{3}={a}_{4}+\frac{1}{16}$,
又a3=$\frac{1}{8}$,故a4=$\frac{1}{16}$,从而$q=\frac{{a}_{4}}{{a}_{3}}$=$\frac{1}{2}$,
则a1=$\frac{{a}_{3}}{{q}^{2}}$=$\frac{1}{2}$,an=$\frac{1}{2}•(\frac{1}{2})^{n-1}$=$(\frac{1}{2})^{n}$ (n∈N*);
(Ⅱ)当bn=8n时,an•bn=$(\frac{1}{2})^{n}$•8n,
所以Tn=$\frac{1}{2}•8+\frac{1}{{2}^{2}}•16+…+\frac{1}{{2}^{n}}•8n$,
$\frac{1}{2}•$Tn=$\frac{1}{{2}^{2}}•8$$+\frac{1}{{2}^{3}}•16+…+\frac{1}{{2}^{n+1}}•8n$,
两式相减,得:$\frac{1}{2}•$Tn=$\frac{1}{2}•8+\frac{1}{{2}^{2}}•8+…+\frac{1}{{2}^{n}}•8-\frac{1}{{2}^{n+1}}•8n$
=$8×\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}-\frac{8n}{{2}^{n+1}}$
=$8-\frac{16+8n}{{2}^{n+1}}$,
所以Tn=16$-\frac{16+8n}{{2}^{n}}$.

点评 本题考查等比数列的通项公式、等差中项的应用、错位相减法求和,考查转化与化归思想、运算求解能力和数据处理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数f(x)上任意一点A(x1,y1)处的切线l1,在其图象上总存在异于点A的点B(x2,y2),使得在点B处的切线l2满足l1∥l2,则称函数具有“自平行性”,下列有关函数f(x)的命题:
①函数f(x)=sinx+1具有“自平行性”;
②函数f(x)=x3(-1≤x≤2)具有“自平行性”;
③函数f(x)=$\left\{\begin{array}{l}{{e}^{x}-1(x<0)}\\{x+\frac{1}{x}(x>m)}\end{array}\right.$具有“自平行性”的充要条件为函数m=1;
④奇函数y=f(x)(x≠0)不一定具有“自平行性”;
⑤偶函数y=f(x)具有“自平行性”.
其中所有叙述正确的命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xoy中,若直线l与圆C1:x2+y2=1和圆C2:(x-5$\sqrt{2}$)2+(y-5$\sqrt{2}$)2=49都相切,且两个圆的圆心均在直线l的下方,则直线l的斜率为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列an=$\frac{1}{\sqrt{a}+\sqrt{a+1}}$,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(-1,1),若非零向量$\overrightarrow{c}$与$\overrightarrow{b}$共线且反向,且|$\overrightarrow{c}$|=8$\sqrt{2}$,则$\overrightarrow{a}$-$\overrightarrow{b}$与2$\overrightarrow{a}$+$\overrightarrow{c}$夹角的余弦值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知复数z=3+4i,$\overline{z}$对应点B,点A、C满足$\overrightarrow{OA}$-$\overrightarrow{BA}$=$\overrightarrow{OC}$.
(1)求点C的坐标;
(2)若点C在角α的终边上,求sin2α+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设二项式(x-$\frac{1}{2}$)n(n∈N*)展开式的二项式系数和与各项系数和分别为an,bn,则$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{{b}_{1}+{b}_{2}+…+{b}_{n}}$=(  )
A.2n-1+3B.2(2n-1+1)C.2n+1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,A,B,C成等差数列是(b+a-c)(b-a+c)=ac的(  )
A.充分但不必要条件B.必要但不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知矩形ABCD的边AB=a,BC=3,PA⊥平面ABCD,若BC边上有且只有一点M,使PM⊥DM,则a的值为1.5.

查看答案和解析>>

同步练习册答案