11£®ÒÑÖªÖ±Ïßl1£ºx=2£¬l2£º3x+4y-12=0£¬l3£ºx-2y-6=0£®
£¨1£©Éèl1Óël2µÄ½»µãΪA£¬l1Óël3µÄ½»µãΪB£¬l2Óël3µÄ½»µãΪC£®ÇóA£¬B£¬CµÄ×ø±ê£»
£¨2£©Éè$\left\{\begin{array}{l}x¡Ý2\\ 3x+4y-12¡Ü0\\ x-2y-6¡Ü0\end{array}\right.$±íʾµÄÆ½ÃæÇøÓòΪD£¬µãM£¨x£¬y£©¡ÊD£¬N£¨3£¬1£©£®
¢ÙÇó|MN|µÄ×îСֵ£»
¢ÚÇó$\frac{y}{x}$µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÁªÁ¢·½³Ì×éÇó½â½»µã×ø±ê¼´¿É£®
£¨2£©»­³öÔ¼ÊøÌõ¼þµÄ¿ÉÐÐÓò£¬ÀûÓþàÀ빫ʽÅжÏ×îÓŽ⣬Çó½â¢Ù£»ÀûÓÃÖ±ÏßµÄбÂÊÇó½â¢Ú¼´¿É£®

½â´ð ½â£º£¨1£©Ö±Ïßl1£ºx=2£¬l2£º3x+4y-12=0£¬l3£ºx-2y-6=0£®l1Óël2µÄ½»µãΪA£¬
¼´$\left\{\begin{array}{l}{x=2}\\{3x+4y-12=0}\end{array}\right.$£»½âµÃA£¨2£¬$\frac{3}{2}$£©
l1Óël3µÄ½»µãΪB£¬¼´£º$\left\{\begin{array}{l}{x=2}\\{x-2y-6=0}\end{array}\right.$½âµÃB£¨2£¬-2£©£»
l2Óël3µÄ½»µãΪC£®¼´$\left\{\begin{array}{l}{3x+4y-12=0}\\{x-2y-6=0}\end{array}\right.$£¬½âµÃC£¨$\frac{24}{5}£¬-\frac{3}{5}$£©
$A£¨2£¬\frac{3}{2}£©£¬B£¨2£¬-2£©£¬C£¨\frac{24}{5}£¬-\frac{3}{5}£©$£» £¨3·Ö£©
£¨2£©×÷³ö¿ÉÐÐÓòÈçÏÂͼ£º
¡­£¨5·Ö£©
¢Ù|MN|µÄ×îСֵΪNµ½Ö±Ïßl2µÄ¾àÀ룬
ËùÒÔ$|MN{|}_{min}=\frac{\left|9+4-12\right|}{\sqrt{{3}^{2}+{4}^{2}}}=\frac{1}{5}$£»¡­£¨8·Ö£©
¢Ú$\frac{y}{x}$±íʾ¿ÉÐÐÓòÄڵĵãÓëÔ­µãÁ¬ÏßµÄбÂÊ£¬ÓÉͼ֪×î´óֵΪ${k}_{OA}=\frac{3}{4}$£¬×îСֵΪkOB=-1£¬
ËùÒÔ$\frac{y}{x}$µÄ·¶Î§Îª$[-1£¬\frac{3}{4}]$¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Óã¬ÀûÓÃzµÄ¼¸ºÎÒâÒ壬ͨ¹ýÊýÐνáºÏÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èô½Ç¦ÁµÄÖձ߾­¹ýµãP£¨4£¬-3£©£¬Ôòsin¦ÁµÄֵΪ£¨¡¡¡¡£©
A£®-$\frac{3}{4}$B£®$\frac{3}{4}$C£®$-\frac{3}{5}$D£®$\frac{4}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬ÒÑÖªasinC=6csinB£®
£¨1£©Çó$\frac{a}{b}$µÄÖµ£»
£¨2£©Èôb=1£¬c=$\sqrt{26}$£¬ÇócosC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑ֪СÍõ¶¨µãͶÀºÃüÖеĸÅÂÊÊÇ$\frac{1}{3}$£¬ÈôËûÁ¬ÐøÍ¶Àº3´Î£¬ÔòÇ¡ÓÐ1´ÎͶÖеĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{4}{9}$B£®$\frac{2}{9}$C£®$\frac{4}{27}$D£®$\frac{2}{27}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª²»µÈʽ×é$\left\{\begin{array}{l}{x-2y+1¡Ý0}\\{x¡Ü2}\\{x+y-1¡Ý0}\end{array}\right.$±íʾµÄÆ½ÃæÇøÓòΪD£¬Ôò
£¨1£©z=x2+y2µÄ×îСֵΪ$\frac{1}{2}$£®
£¨2£©Èôº¯Êýy=|2x-1|+mµÄͼÏóÉÏ´æÔÚÇøÓòDÉϵĵ㣬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ$[-4£¬\frac{3}{4}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èôsin£¨$\frac{¦Ð}{8}$+¦Á£©=$\frac{3}{4}$£¬Ôòcos£¨$\frac{3¦Ð}{8}$-¦Á£©=£¨¡¡¡¡£©
A£®-$\frac{3}{4}$B£®$\frac{3}{4}$C£®-$\frac{\sqrt{7}}{4}$D£®$\frac{\sqrt{7}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®½«º¯Êýy=sinxµÄͼÏóÉÏËùÓеãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ$\frac{1}{2}$±¶£¨×Ý×ø±ê²»±ä£©£¬ÔÙ½«ËùµÃµÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶ÈºóµÃµ½º¯Êýf£¨x£©µÄͼÏó
£¨1£©Ð´³öº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èô¶ÔÈÎÒâµÄx¡Ê[-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{12}$]£¬f2£¨x£©-mf£¨x£©-1¡Ü0ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©ÇóʵÊýaºÍÕýÕûÊýn£¬Ê¹µÃF£¨x£©=f£¨x£©-aÔÚ[0£¬n¦Ð]ÉÏÇ¡ÓÐ2017¸öÁãµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®´ÓÎå¼þÕýÆ·£¬Ò»¼þ´ÎÆ·ÖÐËæ»úÈ¡³öÁ½¼þ£¬ÔòÈ¡³öµÄÁ½¼þ²úÆ·ÖÐÇ¡ºÃÊÇÒ»¼þÕýÆ·£¬Ò»¼þ´ÎÆ·µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®1D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪI£¬p£º¡°¶ÔÈÎÒâx¡ÊI£¬¶¼ÓÐf£¨x£©¡ÜM¡±£¬q£º¡°MΪº¯Êýf£¨x£©µÄ×î´óÖµ¡±£¬ÔòpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸