精英家教网 > 高中数学 > 题目详情
15.设集合M={α|α=k•90°-36°,k∈Z},N={α|-180°<α<180°},则M∩N=(  )
A.{-36°,54°}B.{-126°,144°}
C.{-36°,54°,-126°,144°}D.{54°,-126°}

分析 分别取k=0,1,2,-1,得到M内α的值,与N取交集得答案.

解答 解:∵M={α|α=k•90°-36°},
当k=0时α=-36°,k=1时α=54°,k=2时α=144°,k=-1时α=-126°,
又N={α|-180°<α<180°},
∴M∩N={-36°,54°,144°,-126°}.
故选:C

点评 本题考查了交集及其运算,考查了轴线角,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知x,y满足$\left\{\begin{array}{l}{x-1≤0}\\{y-2≤0}\\{2x+y-2>0}\end{array}\right.$若$\overrightarrow{m}$=(x+1,y)则$\sqrt{{\overrightarrow{m}}^{2}}$的取值范围为(  )
A.(15,2)B.($\frac{29}{2}$,2$\sqrt{2}$)C.(17,2$\sqrt{2}$)D.($\frac{4\sqrt{5}}{5}$,2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:lg(x2-2x-2)≥0;命题q:0<x<4.若p且q为假,p或q为真,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,a1=2,an+1=Sn+2(n≥1,n∈N*),数列{bn}满足bn=$\frac{2n-1}{{a}_{n}}$.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn
(3)若数列{cn}满足cn=$\frac{{a}_{n}}{({a}_{n}-1)^{2}}$,且{cn}的前n项和为Kn,求证:Kn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列{an}中,若${a_1}=1,{a_{n+1}}=\frac{n}{n+1}{a_n}$,则an=$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=mln(x+1),g(x)=$\frac{x}{x+1}$(x>-1).
(Ⅰ)讨论函数F(x)=f(x)-g(x)在(-1,+∞)上的单调性;
(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.圆(x+1)2+y2=1的圆心是抛物线y2=px(p<0)的焦点,则p=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设抛物线C:y2=3x的焦点为F,点A为C上一点,若|FA|=3,则直线FA的倾斜角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2$\sqrt{2}$)(x0>$\frac{p}{2}$)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=$\frac{p}{2}$截得的弦长为$\sqrt{3}$|MA|,若$\frac{|MA|}{|AF|}$=2,则|AF|等于(  )
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

同步练习册答案