【题目】已知偶函数在区间上单调递增,且满,给出下列判断:
①;②在上是减函数;③的图象关于直线对称;
④函数在处取得最大值;⑤函数没有最小值
其中判断正确的序号_______.
【答案】①②④
【解析】
依次判断个选项:根据和函数的奇偶性可得到:,从而可推导出,则①正确;根据得到的图象关于点对称;根据函数的奇偶性可知的图象关于点对称;根据对称性可判断出在上单调递减,则②正确,③错误;根据函数单调性和周期性可知④正确,⑤错误.
①由得:
又为偶函数
则
是以为周期的周期函数
令,则
,则①正确;
②由可知的图象关于点对称
又为偶函数,可知的图象关于点对称
在上单调递增 在上单调递增
为偶函数 在上单调递减,即为减函数,则②正确;
③由②知,的图象关于点对称,则③错误;
④由②知,在上单调递增,在上单调递减
时,,即在处取得最大值
又是周期为的周期函数 在处取得最大值,则④正确;
⑤由④知,在或处取得最小值,则⑤错误.
本题正确结果:①②④
科目:高中数学 来源: 题型:
【题目】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为,在线段上取两个点,,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:
记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:
①数列是等比数列;
②数列是递增数列;
③存在最小的正数,使得对任意的正整数,都有;
④存在最大的正数,使得对任意的正整数,都有.
其中真命题的序号是________________(请写出所有真命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数.
(1)求的值,并求的定义域;
(2)判断函数的单调性,不需要证明;
(3)若对于任意,是否存在实数,使得不等式恒成立?若存在,求出实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆与椭圆的离心率相同.
(1)求的值;
(2)过椭圆的左顶点作直线,交椭圆于另一点,交椭圆于两点(点在之间).①求面积的最大值(为坐标原点);②设的中点为,椭圆的右顶点为,直线与直线的交点为,试探究点是否在某一条定直线上运动,若是,求出该直线方程;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中尝试进行课堂改革.现高一有两个成绩相当的班级,其中班级参与改革,班级没有参与改革.经过一段时间,对学生学习效果进行检测,规定成绩提高超过分的为进步明显,得到如下列联表.
进步明显 | 进步不明显 | 合计 | |
班级 | |||
班级 | |||
合计 |
(1)是否有的把握认为成绩进步是否明显与课堂是否改革有关?
(2)按照分层抽样的方式从班中进步明显的学生中抽取人做进一步调查,然后从人中抽人进行座谈,求这人来自不同班级的概率.
附:,当时,有的把握说事件与有关.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com