精英家教网 > 高中数学 > 题目详情
13.已知数列{xn}满足:x1=1,xn+1=-xn+$\frac{1}{2}$,则数列{xn}的前21项的和为(  )
A.5B.6C.11D.13

分析 利用分组求和、递推关系即可得出.

解答 解:∵xn+1=-xn+$\frac{1}{2}$,∴xn+1+xn=$\frac{1}{2}$,
则数列{xn}的前21项的和=x1+(x2+x3)+…+(x20+x21)=1+10×$\frac{1}{2}$=6,
故选:B.

点评 本题考查了分组求和、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知a∈R,函数f(x)=log2($\frac{1}{x}$+a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)-log2[(a-4)x+2a-5]=0有且只有一解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在?ABCD中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=8,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-12,则|$\overrightarrow{AB}$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.2016年里约奥运会和残奥会吉祥物的名字于2015年12月14日揭晓,两个吉祥物分别叫维尼修斯(Vinicius)和汤姆(Tom)(如图),以此纪念巴萨诺瓦曲风的著名音乐家Vinicius de Moraes和Tom Jobim.某商场抽奖箱中放置了除图案外,其他无差别的8张卡片,其中有2张印有“维尼修斯(Vinicius)“图案,n(2≤n≤4)张印有“汤姆(Tom)”图案,其余卡片上印有”2016年里约奥运会“的图案.
(1)若n=4,从抽奖箱中任意取一卡片,记下图案后放回,连续抽取三次,求三次取出的卡片中,恰有两张印有“2016年里约奥运会”图案卡片的概率;
(2)从抽奖箱中任意抽取两张卡片,如果两张卡片图案相同的概率是$\frac{2}{7}$.求n的值;
(3)①当n=3时,随机抽取一次,若规定取出印有“维尼修斯(Vinicius)”图案的卡片获得16元购物券,取出印有“汤姆(Tom)”图案的卡片获得8元购物券,取出印有“2016年里约奥运会”的图案的卡片没有奖励,用ξ表示获得奖券的面值,求ξ的分布列和数学期望E(ξ).
②在①的条件下,若商场每天有800人参与抽奖活动,顾客获得的购物券全部用于捆绑其他商品消费,每1元购物券能给商场带来10元纯利润,则商场每天在这个活动中能获得的纯利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cosx(sinx-$\sqrt{3}$cosx)+$\frac{\sqrt{3}}{2}$.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值及取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2分别是双曲线x2-$\frac{y^2}{a^2}$=1(a>0)的两个焦点,O为坐标原点,圆O是以F1,F2为直径的圆,直线l:y=$\sqrt{7}$x-4与圆O相交,则实数a的取值范围是(  )
A.(0,1)B.(0,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+3x-3-kex
(I) 当x≥-5时,f(x)≤0,求k的取值范围;
(II) 当k=-1时,求证:f(x)>-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合 P={0,1,2},若P∩(∁zQ)=∅,则集合Q可以为(  )
A.{x|x=2a,a∈P}B.{x|x=2a,a∈P}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某机构在某一学校随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为me,众数为m0,平均值为$\overline x$,则(  )
A.me=m0=$\overline x$B.me=m0<$\overline x$C.me<m0<$\overline x$D.m0<me<$\overline x$

查看答案和解析>>

同步练习册答案