精英家教网 > 高中数学 > 题目详情
在Rt△ABC中,∠C=90°,AC=4,则
AB
AC
=(  )
A、-16B、16C、-9D、9
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用向量垂直与数量积的关系、向量的三角形法则即可得出.
解答: 解:∵∠C=90°,
CB
AC
=0.
AB
AC
=(
CB
-
CA
)•
AC
=
AC
2
=16.
故选:B.
点评:本题考查了向量垂直与数量积的关系、向量的三角形法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(α+
π
4
)=
3
3
,则cos(2α-
π
2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)满足f(x+2)=f(x)且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|的零点个数是(  )
A、2个B、3个C、4个D、6个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥曲线x2+my2=1的一个焦点坐标为F(
2
|m|
,0),则该圆锥曲线的离心率为(  )
A、
2
3
3
B、
3
3
5
C、
5
D、
2
3
3
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA,PB分别为⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=2,CD=3,则PB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(  )海里.
A、10
2
B、20
3
C、10
3
D、20
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的参数方程为
x=2+cosθ
y=sinθ
(θ为参数).
(Ⅰ)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
3
),写出曲线C的极坐标方程和点P的直角坐标;
(Ⅱ)设点Q(x,y)是曲线C上的一个动点,求t=x+y的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x-a|
+x2,(常数a∈R).
(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;
(2)设a=0,且t是正实数,函数f(x)在区间[t,+∞) 上单调递增,试根据函数单调性的定义求出t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2.
(Ⅰ)求通项公式an
(Ⅱ)设bn=
an
S
2
n
,求证:b1+b2+…+bn<1.

查看答案和解析>>

同步练习册答案