精英家教网 > 高中数学 > 题目详情
13.已知A={x|x2-3x+2≤0},B={-2,-1,0,1,2},则A∩B=(  )
A.{-1,0}B.{0,1}C.{1,2}D.

分析 求出A的等价条件,结合集合交集的定义进行求解即可.

解答 解:A={x|x2-3x+2≤0}={x|1≤x≤2},
则A∩B={1,2},
故选:C

点评 本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.△ABC的面积是10,内角A,B,C所对边长分别为a,b,c,$cosA=\frac{12}{13}$,则$\overrightarrow{AB}•\overrightarrow{AC}$=(  )
A.144B.48C.24D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义域为R的函数f(x)=a+$\frac{2bx+3sinx+bxcosx}{2+cosx}$(a,b∈R)有最大值和最小值,且最大值与最小值之和为6,则3a-2b=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正项等差数列{an}和正项等比数列{bn}满足,a5=b5,则下列关系正确的是(  )
A.a1+a9≥b1+b9B.a1+a9≤b1+b9C.a1+a9>b1+b9D.a1+a9<b1+b9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若α为钝角,$cosα=-\frac{3}{5}$,则$cos\frac{α}{2}$的值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$-\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.正项数列{an},a1=1,前n项和Sn满足${S_n}•\sqrt{{S_{n-1}}}-{S_{n-1}}•\sqrt{S_n}=2\sqrt{{S_n}•{S_{n-1}}}(n≥2)$,则sn=$\frac{1}{(2n-1)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=3x2-2x,则f(1)=(  )
A.5B.1C.-1D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=({m+\frac{1}{m}})lnx+\frac{1}{x}-x$,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数$y=sinx+\sqrt{3}cosx$的周期,最小值,及单调增区间.

查看答案和解析>>

同步练习册答案