精英家教网 > 高中数学 > 题目详情
3.已知复数z=1-i,那么|z|=$\sqrt{2}$.

分析 利用复数的模的运算法则求解即可.

解答 解:复数z=1-i,那么|z|=$\sqrt{{1}^{2}+({-1)}^{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查复数的模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知两个命题:
p:“若复数z1,z2满足z1-z2>0,则z1>z2.”;
q:“存在唯一的一个实数对(a,b)使得a-bi=i(2+i).”
其真假情况是(  )
A.p真q假B.p假q假C.p假q真D.p真q真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是(  )
A.S6B.S11C.S12D.S13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,满足$\overrightarrow a$•$\overrightarrow a$=$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{2}$$\overrightarrow a$•$\overline c$=$\overrightarrow b$•$\overrightarrow c$=1,则|$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$|的最小值为(  )
A.2B.4C.$\sqrt{14}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若${\vec e_1}$,${\vec e_2}$是夹角为60°的两个单位向量,则$\vec a$=2${\vec e_1}$+${\vec e_2}$;$\vec b$=-3${\vec e_1}$+2${\vec e_2}$的夹角为(  )
A.60°B.30°C.150°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$θ∈[{\frac{π}{6},\frac{2π}{3}}]$,已知$\overrightarrow{O{P}_{1}}$=(sinθ,cosθ),$\overrightarrow{O{P}_{2}}$=(3-sinθ,-cosθ),则|$\overrightarrow{{P}_{1}{P}_{2}}$|的取值范围是(  )
A.[1,5]B.[$\sqrt{13-6\sqrt{3}}$,$\sqrt{7}$]C.[1,$\sqrt{7}$]D.[1,$\sqrt{13-6\sqrt{3}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.近几年来,我国地区经常出现雾霾天气,某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止组织集体活动,若无雾霾则组织集体活动.预报得知,这一地区在未来一周从周一到周五5天的课间操时间出现雾霾的概率是:前3天均为50%,后2天均为80%,且每一天出现雾霾与否是相互独立的.
(1)求未来一周5天至少一天停止组织集体活动的概率;
(2)求未来一周5天不需要停止组织集体活动的天数X的分布列;
(3)用η表示该校未来一周5天停止组织集体活动的天数,记“函数f(x)=x2-ηx-1在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.为了计算2×4×6×8×10的值,小明同学设计了一个正确的算法,流程图如图所示,只是判断框(菱形框)中的内容看不清了,那么判断框中的内容可以是I≤10或I<11或I≤11或I<12或I<10.5,等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二面角内α-l-β内一点P到二面角的两个面α,β的距离分别为PA,PB,且PA=PB=AB=2,则二面角的度数是120°.

查看答案和解析>>

同步练习册答案