精英家教网 > 高中数学 > 题目详情
过点P(1,2)的直线,将圆形区域{(x,y)|x2+y2≤9}分为两部分,使这两部分的面积之差最大,则该直线的方程为
 
考点:直线与圆的位置关系
专题:直线与圆
分析:由题意可得,所求直线和OP垂直,求出所求直线的斜率,再用点斜式求得所求直线的方程.
解答: 解:由于点P(1,2)在圆x2+y2 =9的内部,故所求直线和OP垂直时,
直线将圆分成的这两部分的面积之差最大.
由于OP的斜率为2,故所求直线的斜率为-
1
2
,再根据所求直线过点P(1,2),
可得所求直线的方程为y-2=-
1
2
(x-1),即 x+2y-5=0,
故答案为:x+2y-5=0.
点评:本题主要考查直线和圆的位置关系,用点斜式求直线的方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2
x
2
-
3
sinx.
(1)求f(x)的最小正周期;
(2)若α是第二象限的角,且f(α-
π
3
)=-
1
5
,求
cos2α
1+cos2α-sin2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是奇函数,当x<0时,f(x)=x3+x2,则f(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=x+2,则函数f(x)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正四面体ABCD的外接球半径为2,过棱AB作该球的截面,则截面面积的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足anan+1=(-1)n(n∈N+),a1=1,Sn是数列{an}的前n项和,则S99=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
lnx
x
+b.
(1)若f(x)在定义域上单调递增,求实数a的取值范围;
(2)当a=-
1
2
时,对任意x∈(0,+∞),b∈(-
3
2
,0),xf(x)+c≤0恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是(
A、(-∞,2-2
2
]∪[2+2
2
,+∞)
B、(-∞,2
2
]∪[2
2
,+∞)
C、[2-2
2
,2+2
2
]
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

命题q:对任意实数x不等式x2-mx+4≥0恒成立;命题r:方程(m-3)x2+4y2=4(m-3)表示双曲线.若q∨r为真命题,q∧r为假命题,则m的取值范围
 

查看答案和解析>>

同步练习册答案