分析 求得椭圆的焦点坐标,利用向量的坐标运算,求得$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=$\frac{1}{4}$(3x2-8),由-2≤x≤2,即可求得答案.
解答 解:由椭圆$\frac{x^2}{4}+{y^2}=1$,焦点知F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),设P(x,y),-2≤x≤2,
则$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=(-$\sqrt{3}$-x,-y)($\sqrt{3}$-x,-y)=x2+y2-3=$\frac{1}{4}$(3x2-8),
∵-2≤x≤2,
∴0≤x2≤4,故$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$∈[-2,1],
故答案为:[-2,1].
点评 本题考查椭圆的简单几何性质,向量的坐标运算,一元二次函数的最值,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,1) | C. | (0,$\frac{\sqrt{2}}{2}$] | D. | [$\frac{\sqrt{2}}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{e}$ | B. | $\sqrt{e^3}$ | C. | $\root{3}{e^2}$ | D. | $\root{3}{e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| PM2.5 | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
| 空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重污染 | 重度污染 |
| 天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 1.32 | 2.07 | 2.70 | 3.74 | 5.02 | 6.63 | 7.87 | 10.828 |
| 非重度污染 | 重度污染 | 合计 | |
| 供暖季 | 22 | 8 | 30 |
| 非供暖季 | 63 | 7 | 70 |
| 合计 | 85 | 15 | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 青年人 | 中年人 | 合计 | |
| 经常使用微信 | 80 | 40 | 120 |
| 不经常使用微信 | 55 | 5 | 60 |
| 合计 | 135 | 45 | 180 |
| p(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{5}{12}$] | B. | (0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$) | C. | (0,$\frac{5}{6}$] | D. | (0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com