精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,则f($\frac{3}{2}$)=(  )
A.$\sqrt{e}$B.$\sqrt{e^3}$C.$\root{3}{e^2}$D.$\root{3}{e}$

分析 由已知得f($\frac{3}{2}$)=f($\frac{1}{2}$),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,
∴f($\frac{3}{2}$)=f($\frac{1}{2}$)=${e}^{\frac{1}{2}}$=$\sqrt{e}$.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递减,若实数a满足f(log3a)+f(${log}_{\frac{1}{3}}$a)≤2f(2),则a的取值范围是(  )
A.[$\frac{1}{9}$,9]B.(-∞,$\frac{1}{9}$]C.[$\frac{1}{2}$,2]D.(0,$\frac{1}{9}$]∪[9,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列各组函数中,表示同一函数的是(  )
A.f(x)=2log2x,$g(x)={log_2}{x^2}$B.f(x)=|x|,$g(x)={(\sqrt{x})^2}$
C.f(x)=x,$g(x)=lo{g_2}{2^x}$D.f(x)=x+1,$g(x)=\frac{x^2}{x}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,AB=7,BC=5,CA=6,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=-19.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{2n-1}的前n项1,3,7,…,2n-1组成集合${A_n}=\left\{{1,3,7,{2^n}-1}\right\}$(n∈N*),从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn,例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,试写出Sn=${2}^{\frac{n(n+1)}{2}}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC中,A=45°,B=30°,a=10,则b=(  )
A.5$\sqrt{2}$B.10$\sqrt{2}$C.10$\sqrt{6}$D.5$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x+1)的图象关于直线x=-1对称,且满足f(x)+f′(x)=2ex,若a=f(-3),b=f(lnπ),c=f(|sinx|),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F1,F2分别是椭圆$\frac{x^2}{4}+{y^2}=1$的两焦点,点P是该椭圆上一动点,则$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范围为[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1(p>0)的左焦点在抛物线y2=2px的准线上,则p=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

同步练习册答案