精英家教网 > 高中数学 > 题目详情
3.设m∈R,其中实数x,y满足$\left\{\begin{array}{l}{x≥m}\\{2x-3y+6≥0}\\{3x-2y-6≤0}\end{array}\right.$.若|x+2y|≤18,则实数m的最小值-3.

分析 先画出满足条件的平面区域,令z=x+2y,则z≥-18,y=-$\frac{1}{2}$x+$\frac{z}{2}$,显然直线过A时z最小,代入A点的坐标,求出m的最小值即可.

解答 解:画出满足条件的平面区域,如图示:

由$\left\{\begin{array}{l}{x=m}\\{3x-2y-6=0}\end{array}\right.$,解得:A(m,$\frac{3}{2}$m-3),
令z=x+2y,则z≥-18,y=-$\frac{1}{2}$x+$\frac{z}{2}$,
显然直线过A时z最小,
∴m+3m-6=-18,解得:m=-3,
故m的最小值是-3,
故答案为:-3.

点评 本题考察了简单的线性规划问题,考察数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x3-$\frac{1}{x}$的图象关于(  )
A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\frac{1}{a}$+$\frac{1}{b}$=1(a>0,b>0),则点(0,b)到直线3x-4y-a=0的距离的最小值是$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设a=log3$\frac{3}{2}$,b=log2$\sqrt{5}$,c=($\frac{1}{4}$)0.4,则a<c<b.(比较大小)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$.
(1)判断f(x)的奇偶性;
(2)证明:当x>0时f(x)>0,当x<0时f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数,既是奇函数又在区间(0,+∞)上单调递增的函数是(  )
A.y=$\frac{1}{x}$B.y=2|x|C.y=-log${\;}_{\frac{1}{2}}$xD.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\overrightarrow{{P}_{1}P}$=-$\frac{2}{3}$$\overrightarrow{P{P}_{2}}$,若实数λ满足$\overrightarrow{P{P}_{2}}$=λ$\overrightarrow{{P}_{2}{P}_{1}}$,则λ的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式组$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+1≥0}\\{2x+3y-4≤0}\end{array}\right.$,表示在平面区域绕着原点旋转一周所得平面图形的面积为$\frac{16π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,已知a3+a5=2,a7+a10+a13=9,则此数列的公差为(  )
A.$\frac{1}{3}$B.3C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案