精英家教网 > 高中数学 > 题目详情
13.在等差数列{an}中,已知a3+a5=2,a7+a10+a13=9,则此数列的公差为(  )
A.$\frac{1}{3}$B.3C.$\frac{1}{2}$D.$\frac{1}{6}$

分析 利用等差数列的通项公式列出方程组,由此能求出此数列的公差.

解答 解:∵在等差数列{an}中,a3+a5=2,a7+a10+a13=9,
∴$\left\{\begin{array}{l}{{a}_{1}+2d+{a}_{1}+4d=2}\\{{a}_{1}+6d+{a}_{1}+9d+{a}_{1}+12d=9}\end{array}\right.$,
解得${a}_{1}=0,d=\frac{1}{3}$.
故选:A.

点评 本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设m∈R,其中实数x,y满足$\left\{\begin{array}{l}{x≥m}\\{2x-3y+6≥0}\\{3x-2y-6≤0}\end{array}\right.$.若|x+2y|≤18,则实数m的最小值-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市一高中经过层层上报,被国家教育部认定为2015年全国青少年足球特色学校.该校成立了特色足球队,队员来自高中三个年级,人数为50人.视力对踢足球有一定的影响,因而对这50人的视力作一调查.测量这50人的视力(非矫正视力)后发现他们的视力全部介于4.75和5.35之间,将测量结果按如下方式分成6组:第一组[4.75,4.85),第二组[4.85,4.95),…,第6组[5.25,5.35],如图是按上述分组方法得到的频率分布直方图.又知:该校所在的省中,全省喜爱足球的高中生视力统计调查数据显示:全省100000名喜爱足球的高中生的视力服从正态分布N(5.01,0.0064).
(1)试评估该校特色足球队人员在全省喜爱足球的高中生中的平均视力状况;
(2)求这50名队员视力在5.15以上(含5.15)的人数;
(3)在这50名队员视力在5.15以上(含5.15)的人中任意抽取2人,该2人中视力排名(从高到低)在全省喜爱足球的高中生中前130名的人数记为ξ,求ξ的数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b为两个不相等的非零实数,则方程ax-y+b=0与bx2+ay2=ab所表示的曲线可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.2012年全国中学生机器人大赛选选拔赛中,机器人刚开始在原点位置,为了让机器人完成某项任务,学生给机器人设置了以下指令:先逆时针旋转α角,然后向前进1米,将该指令进行一次称为一次操作,试用向量解决以下问题.
(1)当α=$\frac{π}{3}$时,经过几次操作才能回到原点?
(2)是否存在α,使机器人经过10次操作,能首次回到原点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设向量$\overrightarrow{a}$=(-1,$\sqrt{3}$),$\overrightarrow{b}$=(cosωx,sinωx),已知函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的图象关于直线x=$\frac{π}{3}$对称,其中ω∈(-$\frac{1}{2}$,$\frac{5}{2}$).
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分别为三个内角A,B,C的对边,锐角B满足f($\frac{B}{2}$+$\frac{π}{6}$)=$\frac{2\sqrt{5}}{3}$,b=$\sqrt{2}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|x2-6x+8<0},集合B={x∈N|y=$\sqrt{3-x}$},则A∩B=(  )
A.{3}B.{1,3}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题:“对任意的x∈R,x2+x+1>0”的否定是(  )
A.不存在x∈R,x2+x+1>0B.存在x0∈R,x02+x0+1>0
C.存在x0∈R,x02+x0+1≤0D.对任意的x∈R,x2+x+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的函数f(x)=(a+1)x2-ax+a-1,a∈R是常数.
(1)当a=1时,求不等式f(x)>0的解集;
(2)若?x∈R,都有f(x)<2x2,求a的取值范围(用集合表示).

查看答案和解析>>

同步练习册答案