分析 (1)根据互斥事件的概率计算公式,求出该选手在过第3关被淘汰的概率;
(2)根据X的可能取值,计算对应的概率值,
写出X的分布列,计算数学期望值.
解答 解:(1)记“该选手能过第i关”的事件为Ai(i=1,2,3),
则$P({A_1})=\frac{4}{5},P({A_2})=\frac{3}{5},P({A_3})=\frac{2}{5}$,
所以该选手能在过第3关被淘汰的概率为
$P=P({{A_1}{A_2}\overline{A_3}})=P({A_1})P({A_2})P({\overline{A_3}})=\frac{4}{5}×\frac{3}{5}×\frac{3}{5}=\frac{36}{125}$;
(2)X的可能取值为1,2,3,
所以P(X=1)=P($\overline{{A}_{1}}$)=$\frac{1}{5}$,
P(X=2)=P(A1$\overline{{A}_{2}}$)=P(A1)($\overline{{A}_{2}}$)=$\frac{4}{5}$×$\frac{2}{5}$=$\frac{8}{25}$,
$P({X=3})=P({{A_1}{A_2}})=P({A_1})P({A_2})=\frac{4}{5}×\frac{3}{5}=\frac{12}{25}$,
所以X的分布列为
| X | 1 | 2 | 3 |
| P | $\frac{1}{5}$ | $\frac{8}{25}$ | $\frac{12}{25}$ |
点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | ?x<0,x3≥0 | B. | ?x0>0,x03≤0 | C. | ?x0<0,x03≥0 | D. | ?x>0,x3≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 120 | C. | 2400 | D. | 14400 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12种 | B. | 20种 | C. | 24种 | D. | 48种 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com