精英家教网 > 高中数学 > 题目详情
某品牌电视专卖店,在五一期间设计一项有奖促销活动:每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖.
奖次 一等奖 二等奖 三等奖
随机数组的特征 3个1或3个0 只有2个1或2个0 只有1个1或1个0
奖金(单位:元) 5m 2m m
商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,产生20组随机数组,每组3个数,试验结果如下所示:
235,145,124,754,353,296,065,379,118,247,
520,356,218,954,245,368,035,111,357,265.
(1)在以上模拟的20组数中,随机抽取3组数,至少有1组获奖的概率;
(2)根据上述模拟试验的结果,将频率视为概率.
(i)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;
(ii)若本次活动平均每台电视的奖金不超过260元,求m的最大值.
考点:离散型随机变量的期望与方差,相互独立事件的概率乘法公式
专题:综合题,概率与统计
分析:(1)利用对立事件的概率,即可求出随机抽取3组数,至少有1组获奖的概率;
(2)(i)求出每购买一台电视获奖的概率,利用相互独立事件概率公式,可求恰好有两台获奖的概率;
(ii)设ξ为获得奖金的数额,则ξ的可能取值为0,m,2m,5m,求出ξ的分布列,可得期望,利用本次活动平均每台电视的奖金不超过260元,即可求m的最大值.
解答: 解:(1)设“在以上模拟的20组数中,随机抽取3组数,至少有1组获奖”为事件A,则
由数组知,没中奖的组数为12,∴P(A)=1-
C
3
12
C
3
20
=
46
57
.…(3分)
(2)(i)由题意得,每购买一台电视获奖的概率为P=
8
20
=
2
5

设“购买四台电视,恰有两台获奖”为事件B,则P(B)=
C
2
4
(
2
5
)2×(1-
2
5
)2=
216
625
.…(6分)
(ii)设“购买一台电视获一等奖”为事件A1,“购买一台电视获二等奖”为事件A2
“购买一台电视获三等奖”为事件A3
P(A1)=
1
20
,P(A2)=
1
20
,P(A3)=
3
10
.…(8分)
设ξ为获得奖金的数额,则ξ的可能取值为0,m,2m,5m,故ξ的分布列为
ξ 0 m 2m 5m
P
3
5
3
10
1
20
1
20
Eξ=0+
3m
10
+
2m
20
+
5m
20
=
13m
20
.…(10分)
由题意Eξ=
13m
20
≤260
,得m≤400,
∴m的最大值为400.…(12分)
点评:本题考查概率的计算,考查离散型随机变量的期望与方差,确定变量的取值,求出相应的概率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(1,-1),
b
=(2,x),若(
a
+
b
)∥(
a
-2
b
),则实数x的值为(  )
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若锐角αα满足:f(α)-f(α-
π
6
)=1,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”,若椭圆C的一个焦点为F2
2
,0),其短轴上的一个端点到F2的距离为
3

(Ⅰ)求椭圆C及其“伴随圆”的方程
(Ⅱ)过椭圆C的“伴随圆”上的一动点Q作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的方程为y=ax2-1,直线l的方程为y=
x
2
,点A(3,-1)关于直线l的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知P=(
1
2
,1),求过点P及抛物线与x轴两个交点的圆的方程;
(3)已知点F(0,-
15
16
)是抛物线的焦点,P(
1
2
,1),M是抛物线上的动点,求|MP|+|MF|的最小值及此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在(0,+∞)上为减函数,且f(3)=0,求f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.

(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

通过随机询问72名不同性别的大学生在购买食物时是否读营养说明,得到如下2×2列联表:(临界值见附表) K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

女生 男生 总计
读营养说明 16 28 44
不读营养说明 20 8 28
总计 36 36 72
请问性别和读营养说明之间在多大程度上有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:

根据上表所提供信息,第
 
号区域的总产量最大,该区域种植密度为
 
株/m2

查看答案和解析>>

同步练习册答案