精英家教网 > 高中数学 > 题目详情
某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.

(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望Eξ.
考点:离散型随机变量的期望与方差,频率分布直方图
专题:应用题,概率与统计
分析:(Ⅰ)利用频率分布直方图,求出频率,即可求得结论;
(Ⅱ)ξ=0,1,2,3,求出随机变量取每一个值的概率值,即可求随机变量ξ的分布列及数学期望.
解答: 解:(Ⅰ)抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为(0.06+0.02)×5×200=80人
参加社区服务时间不少于90小时的概率
80
200
=0.4;
(Ⅱ)ξ=0,1,2,3,则
P(ξ=0)=0.63=0.216,P(ξ=1)=
C
1
3
•0.4•0.62
=0.432,P(ξ=2)=
C
2
3
•0.42•0.6
=0.288,P(ξ=3)=0.43=0.064
∴ξ的分布列为
ξ 0 1 2 3
P 0.216 0.432 0.288 0.064
数学期望Eξ=1×0.432+2×0.288+3×0.064=1.2.
点评:求随机变量的分布列与期望的关键是确定变量的取值,求出随机变量取每一个值的概率值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,D为BC边上一点,BD=
1
2
DC,∠ADB=120°,AD=2,若△ADC的面积为
3
,则AB=(  )
A、1
B、
5
C、
7
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{
1
an
}是公差为2的等差数列,且a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{anan+1}的前n项和为Tn.证明:
1
3
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某品牌电视专卖店,在五一期间设计一项有奖促销活动:每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖.
奖次 一等奖 二等奖 三等奖
随机数组的特征 3个1或3个0 只有2个1或2个0 只有1个1或1个0
奖金(单位:元) 5m 2m m
商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,产生20组随机数组,每组3个数,试验结果如下所示:
235,145,124,754,353,296,065,379,118,247,
520,356,218,954,245,368,035,111,357,265.
(1)在以上模拟的20组数中,随机抽取3组数,至少有1组获奖的概率;
(2)根据上述模拟试验的结果,将频率视为概率.
(i)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;
(ii)若本次活动平均每台电视的奖金不超过260元,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M为抛物线C:x2=4py(p>0)准线上的任意一点,过点M作曲线C的两条切线,设切点为A、B.
(Ⅰ)直线AB是否过定点?如果是,求出该定点,如果不是,请说明理由;
(Ⅱ)当直线MA,MF,MB的斜率均存在时,求证:直线MA,MF,MB的斜率的倒数成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设P是圆x2+y2=2上的动点,点D是P在x轴上的投影,M为PD上一点,且|PD|=
2
|MD|,当P在圆上运动时,记点M的轨迹为曲线C.
(Ⅰ)求证:曲线C是焦点在x轴上的椭圆,并求其方程;
(Ⅱ)设椭圆C的右焦点为F2,直线l:y=kx+m与椭圆C交于A、B两点,直线F2A与F2B的倾斜角互补,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某校校门的一个局部的截面设计图,CA=AO=OB=2米,
EF
是以O为圆心、OA为半径的圆的一段弧(E、F两点分别在OC、OD上),∠AOC=∠BOD=θ(θ≤
π
4
),OD=k•OC(k是常数且1<k≤3).通过对材料性能进行测算,“跨度比”
CD
OC
不能超过
3k+1
. 
(1)将该截面(图中实线围成的区域)的面积S表示为θ的函数;
(2)为使该门口显得相对大气,截面积S越大越好. 当S最大时,试求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线C:y2=2px(p>0)的焦点为F,准线为l,过准线l上一点M(-1,0)且斜率为k的直线l1交抛物线C于A,B两点,线段AB的中点为P,直线PF交抛物线C于D,E两点.
(Ⅰ)求抛物线C的方程及k的取值范围;
(Ⅱ)是否存在k值,使点P是线段DE的中点?若存在,求出k值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线f(x)=ax2-lnx存在垂直于y轴的切线,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案