精英家教网 > 高中数学 > 题目详情
如图,设P是圆x2+y2=2上的动点,点D是P在x轴上的投影,M为PD上一点,且|PD|=
2
|MD|,当P在圆上运动时,记点M的轨迹为曲线C.
(Ⅰ)求证:曲线C是焦点在x轴上的椭圆,并求其方程;
(Ⅱ)设椭圆C的右焦点为F2,直线l:y=kx+m与椭圆C交于A、B两点,直线F2A与F2B的倾斜角互补,求证:直线l过定点,并求该定点的坐标.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)设M的坐标为(x,y),P的坐标为(xP,yP),由已知得
xP=x
yP=
2
y
,由此能证明曲线C是焦点在x轴上的椭圆,并能求出其方程.
(Ⅱ)设直线AB方程为y=kx+m,由
x2
2
+y2=1
y=kx+m
,得(2k2+1)x2+4kmx+2m2-2=0,由此利用韦达定理结合已知条件能证明直线MN过定点(2,0).
解答: (Ⅰ)证明:设M的坐标为(x,y),P的坐标为(xP,yP),
由已知得
xP=x
yP=
2
y

∵P在圆上,∴x2+(
2
y
2=2,即
x2
2
+y2
=1,
∴曲线C是焦点在x轴上的椭圆,其方程为
x2
2
+y2=1

(Ⅱ)证明:由题意,知直线AB斜率存在,其方程为y=kx+m,
x2
2
+y2=1
y=kx+m
,消去y,得(2k2+1)x2+4kmx+2m2-2=0,
△=(4km)2-4(2k2+1)(2m2-2)>0.
设A(x1,y1),B(x2,y2),
则x1+x2=-
4km
2k2+1
x1x2=
2m2-2
2k2+1

kF2A=
kx1+m
x1-1
kF2B=
kx2+m
x2-1

由已知直线F2A与F2B的倾斜角互补得,
kF2M+kF2N=0,即
kx1+m
x1-1
+
kx2+m
x2-1
=0

化简得,2kx1x2+(m-k)(x1+x2)-2m=0,
∴2k•
2m2-2
2k2+1
-
4km(m-k)
2k2+1
-2m=0,
整理得,m=-2k,
∴直线MN的方程为y=k(x-2),
故直线MN过定点,该定点的坐标为(2,0).
点评:本题考查曲线是椭圆的证明,考查直线过定点的证明,解题时要认真审题,熟练掌握椭圆的简单性质及其应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a∈R,i是虚数单位,则“a=1”是“
a+i
a-i
为纯虚数”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”,若椭圆C的一个焦点为F2
2
,0),其短轴上的一个端点到F2的距离为
3

(Ⅰ)求椭圆C及其“伴随圆”的方程
(Ⅱ)过椭圆C的“伴随圆”上的一动点Q作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在(0,+∞)上为减函数,且f(3)=0,求f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.

(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别是a,b,c,已知a2-b2=bc,2sinB-sinC=0,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

通过随机询问72名不同性别的大学生在购买食物时是否读营养说明,得到如下2×2列联表:(临界值见附表) K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

女生 男生 总计
读营养说明 16 28 44
不读营养说明 20 8 28
总计 36 36 72
请问性别和读营养说明之间在多大程度上有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x
(1)设函数g(x)=f(x)+f(x-
π
4
),求函数g(x)的单调递增区间;
(2)函数h(x)=f(x)-asinx在x∈R上有最小值为-1,求a的值;
(3)当θ∈[0,
π
2
]
时,关于θ的方程f(θ)-2mf(
θ
2
)+4m-3=0有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

当圆x2+y2=4的圆心到直线y=kx+1的距离最大时,k=
 

查看答案和解析>>

同步练习册答案