精英家教网 > 高中数学 > 题目详情
8.如图所示,正方体ABCD-A1B1C1D1的棱长为1,BD∩AC=O,M是线段D1O上的动点,过点M作平面ACD1的垂线交平面A1B1C1D1于点N,则点N到点A距离的最小值为$\frac{\sqrt{6}}{2}$.

分析 根据正方体的结构特征,可证,N在B1D1上,过N作NG⊥A1B1,交A1B1于G,设NG=x,利用勾股定理构造关于x的函数,求函数的最小值.

解答 解:∵平面ACD1⊥平面BDD1B1,又MN⊥平面ACD1
∴MN?平面BDD1B1,∴N∈B1D1
过N作NG⊥A1B1,交A1B1于G,将平面A1B1C1D1展开,如图:
设NG=x,(0≤x≤1),
∴AN=$\sqrt{{1}^{2}+(1-x)^{2}+{x}^{2}}$=$\sqrt{2{x}^{2}-2x+2}$=$\sqrt{2(x-\frac{1}{2})^{2}+\frac{3}{2}}$≥$\frac{\sqrt{6}}{2}$,
当x=$\frac{1}{2}$时,AN取最小值$\frac{\sqrt{6}}{2}$.
故答案为:$\frac{{\sqrt{6}}}{2}$.

点评 本题考查了正方体的结构性质,考查了函数思想的应用,构造函数模型,利用二次函数求最小值是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.复数z满足(l+i)z=|$\sqrt{3}$-i|,则$\overrightarrow{z}$=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设椭圆C1:$\frac{x^2}{16}+\frac{y^2}{12}$=1与抛物线C2:y2=8x的一个交点为P(x0,y0),定义f(x)=$\left\{\begin{array}{l}{2\sqrt{2x}(0<x<{x}_{0})}\\{\frac{\sqrt{3}}{2}\sqrt{16-{x}^{2}}(x>{x}_{0})}\end{array}\right.$,若直线y=a与y=f(x)的图象交于A、B两点,且已知定点N(2,0),则△ABN的周长的范围是($\frac{20}{3}$,8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设f(x)是定义在实数集R上的函数,且满足f(x+2)=f(x+1)-f(x),如果$f(1)=lg\frac{3}{2}$,f(2)=lg15,则 f(0)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.甲乙二人玩猜字游戏,先由甲在心中想好一个数字,记作a,然后再由乙猜甲刚才所想到的数字,并把乙猜到的数字记为b,二人约定:a、b∈{1,2,3,4},且当|a-b|≤1时乙为胜方,否则甲为胜方.则甲取胜的概率是$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设$f(x)=\frac{1}{{{2^x}+\sqrt{2}}}$,利用推导等差数列前n项和的方法--倒序相加法,求f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=lg(ax-bx),且f(1)=lg2,f(2)=lg12
(1)求a,b的值.
(2)当x∈[1,2]时,求f(x)的最大值.
(3)m为何值时,函数g(x)=ax的图象与h(x)=bx-m的图象恒有两个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.椭圆$\frac{{x}^{2}}{16}$+y2=1的长轴长为(  )
A.16B.2C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知两直线l1与l2的方向向量分别为$\overrightarrow{{v}_{1}}$=(1,-3,-2),$\overrightarrow{{v}_{2}}$=(-3,9,6),则l1与l2的位置关系为l1∥l2或重合.

查看答案和解析>>

同步练习册答案