精英家教网 > 高中数学 > 题目详情
4.复数z满足(l+i)z=|$\sqrt{3}$-i|,则$\overrightarrow{z}$=1+i.

分析 根据复数模的计算和复数的运算法则以及共轭复数的定义即可求出.

解答 解:(l+i)z=|$\sqrt{3}$-i|=2,
∴z=$\frac{2}{1+i}$=$\frac{2(1-i)}{2}$=1-i,
∴$\overrightarrow{z}$=1+i,
故答案为:1+i

点评 本题考查了复数模的计算和复数的运算法则以及共轭复数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知a>0,x、y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$ 若z=2x+y的最小值与最大值的和为7,则a=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△AOB中,点P在AB上,且$\overrightarrow{OP}$=m$\overrightarrow{PA}$+2m$\overrightarrow{OB}$(m∈R),求$\frac{|\overrightarrow{PA}|}{|\overrightarrow{PB}|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={y|y=($\frac{1}{2}$)x,x≥-1},B={y|y=ex+1,x≤0},则下列结论正确的是(  )
A.A=BB.A∪B=RC.A∩(∁RB)=∅D.B∩(∁RA)=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.根据定积分的定义,${∫}_{0}^{2}$x2dx等于(  )
A.$\sum_{i=1}^{n}$($\frac{i-1}{n}$)2•$\frac{1}{n}$B.$\underset{lim}{n→∞}$$\sum_{i=1}^{n}$($\frac{i-1}{n}$)2•$\frac{1}{n}$
C.$\sum_{i=1}^{n}$($\frac{2i}{n}$)2•$\frac{2}{n}$D.$\underset{lim}{n→∞}$$\sum_{i=1}^{n}$($\frac{2i}{n}$)2•$\frac{2}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$ax2-bx,设h(x)=f(x)-g(x).
(1)若g(2)=2,讨论函数h(x)的单调性;
(2)若函数g(x)是关于x的一次函数,且函数h(x)有两个不同的零点x1,x2,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知函数f(x)=ax+$\frac{a}{x}$-3lnx.
(1)当a=2时,求f(x)的最小值;
(2)若f(x)在[1,e]上为单调函数,求实数a的取值范围;
(3)若存在实常数k和b,使得函数f(x)和g(x)对各自定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b成立,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.当a=0时,令g(x)=$\frac{-2e}{3}$f(x)(e为自然对数的底数),h(x)=x2(x∈R),则函数g(x)和h(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆的两焦点F1(-1,0)、F2(1,0),P是椭圆上一点且2|F1F2|=|PF1|+|PF2|,则此椭圆的标准方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,正方体ABCD-A1B1C1D1的棱长为1,BD∩AC=O,M是线段D1O上的动点,过点M作平面ACD1的垂线交平面A1B1C1D1于点N,则点N到点A距离的最小值为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步练习册答案