精英家教网 > 高中数学 > 题目详情
16.设f(x)是定义在实数集R上的函数,且满足f(x+2)=f(x+1)-f(x),如果$f(1)=lg\frac{3}{2}$,f(2)=lg15,则 f(0)=-1.

分析 根据抽象函数关系令x=0,代入进行求解即可.

解答 解:∵f(x+2)=f(x+1)-f(x),
∴当x=0时,f(2)=f(1)-f(0),
即f(0)=f(1)-f(2),
∵$f(1)=lg\frac{3}{2}$,f(2)=lg15,
∴f(0)=f(1)-f(2)=lg$\frac{3}{2}$-lg15=lg($\frac{3}{2}×\frac{1}{15}$)=lg$\frac{1}{10}$=-1,
故答案为:-1.

点评 本题主要考查函数值的计算,利用赋值法令x=0是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合A={y|y=($\frac{1}{2}$)x,x≥-1},B={y|y=ex+1,x≤0},则下列结论正确的是(  )
A.A=BB.A∪B=RC.A∩(∁RB)=∅D.B∩(∁RA)=∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆的两焦点F1(-1,0)、F2(1,0),P是椭圆上一点且2|F1F2|=|PF1|+|PF2|,则此椭圆的标准方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某同学利用寒假到一家商场勤工俭学,该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付5元,第二天付10元,第三天付15元,以此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍).若该同学计划工作10天,请你帮他做出最有利的选择,给出解释.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=-x+log2$\frac{1-x}{1+x}$.
(1)求$f(\frac{1}{2016})+f(-\frac{1}{2016})$的值;
(2)当x∈[-a,a](其中a∈(0,1)且a是常数)时,f(x)是否存在最小值?如果存在,求出最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$f(x)=lg\frac{1-x}{1+x}$.
(1)判断f(x)的奇偶性,并说明理由;
(2)设f(x)的定义域为D,a,b∈D.求$f(a)+f(b)-f(\frac{a+b}{1+ab})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,正方体ABCD-A1B1C1D1的棱长为1,BD∩AC=O,M是线段D1O上的动点,过点M作平面ACD1的垂线交平面A1B1C1D1于点N,则点N到点A距离的最小值为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为$\left\{\begin{array}{l}x=2+tcosα\\ y=1+tsinα\end{array}\right.\;\;\;(t$为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且$|PA|•|PB|=\frac{28}{3}$,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,扇形AOB,圆心角AOB的大小等于$\frac{π}{3}$,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.设∠COP=θ(θ∈(0,$\frac{π}{3}$)),则△POC周长与角θ的函数关系式f(θ)=$\frac{4\sqrt{3}}{3}$sin($θ+\frac{π}{3}$)+2,θ∈(0,$\frac{π}{3}$).

查看答案和解析>>

同步练习册答案