精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=lg(ax-bx),且f(1)=lg2,f(2)=lg12
(1)求a,b的值.
(2)当x∈[1,2]时,求f(x)的最大值.
(3)m为何值时,函数g(x)=ax的图象与h(x)=bx-m的图象恒有两个交点.

分析 (1)由已知可得a-b=2,a2-b2=12,解得答案;
(2)当x∈[1,2]时,4x-2x∈[2,12],结合对数函数的图象和性质,可得答案;
(3)若函数g(x)=ax的图象与h(x)=bx-m的图象恒有两个交点,则4x-2x=-m有两个解,令t=2x,则t>0,则t2-t=-m有两个正解,进而得到答案.

解答 解:(1)∵f(x)=lg(ax-bx),且f(1)=lg2,f(2)=lg12,
∴a-b=2,a2-b2=12,
解得:a=4,b=2;
(2)由(1)得:函数f(x)=lg(4x-2x),
当x∈[1,2]时,4x-2x∈[2,12],
故当x=2时,函数f(x)取最大值lg12,
(3)若函数g(x)=ax的图象与h(x)=bx-m的图象恒有两个交点.
则4x-2x=-m有两个解,令t=2x,则t>0,
则t2-t=-m有两个正解;
则$\left\{\begin{array}{l}{1-4m>0}\\{m>0}\end{array}\right.$,
解得:m∈(0,$\frac{1}{4}$).

点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.己知函数f(x)=ax+$\frac{a}{x}$-3lnx.
(1)当a=2时,求f(x)的最小值;
(2)若f(x)在[1,e]上为单调函数,求实数a的取值范围;
(3)若存在实常数k和b,使得函数f(x)和g(x)对各自定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b成立,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.当a=0时,令g(x)=$\frac{-2e}{3}$f(x)(e为自然对数的底数),h(x)=x2(x∈R),则函数g(x)和h(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=-x+log2$\frac{1-x}{1+x}$.
(1)求$f(\frac{1}{2016})+f(-\frac{1}{2016})$的值;
(2)当x∈[-a,a](其中a∈(0,1)且a是常数)时,f(x)是否存在最小值?如果存在,求出最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,正方体ABCD-A1B1C1D1的棱长为1,BD∩AC=O,M是线段D1O上的动点,过点M作平面ACD1的垂线交平面A1B1C1D1于点N,则点N到点A距离的最小值为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为 F,上顶点为 A,P 为C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3-$\sqrt{2}$的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求$\overrightarrow{PM}•\overrightarrow{PN}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为$\left\{\begin{array}{l}x=2+tcosα\\ y=1+tsinα\end{array}\right.\;\;\;(t$为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且$|PA|•|PB|=\frac{28}{3}$,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“$α=\frac{π}{2}$”是“cos2α=-1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=2sin({\frac{1}{3}x-\frac{π}{3}})$.
(1)求f(x)的单调增区间;
(2)设$α,β∈[{0,\frac{π}{2}}],f({3α-\frac{π}{2}})=-\frac{16}{17},f({3β+π})=\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线l和平面α,若l∥α,P∈α,则过点P且垂直于l的直线(  )
A.只有一条,不在平面α内B.只有一条,且在平面α内
C.有无数条,一定在平面α内D.有无数条,不一定在平面α内

查看答案和解析>>

同步练习册答案