精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a2x+ax-6,其中a>0且a≠1.
(1)当a=2时,求函数f(x)的零点;
(2)若x∈[1,2]时,函数f(x)的最大值为6,求a的值.
分析:(1)求出f(x)=0的根,即可求函数f(x)的零点;
(2)换元,再进行分类讨论,利用函数的单调性,函数f(x)的最大值为6,即可求a的值.
解答:解:(1)当a=2时,f(x)=22x+2x-6…1分
由f(x)=0得22x+2x-6=0,即(2x-2)(2x+3)=0…2分
∴2x=2或2x=-3(舍去)                           …4分
∴x=1…5分
∴函数f(x)的零点是1…6分
(2)令ax=t,则g(t)=t2+t-6
①当0<a<1时
∵函数t=ax在R上是减函数,且1≤x≤2,∴a2≤t≤a…7分
∵g(t)=t2+t-6在[-
1
2
,+∞)
上单调递增
∴f(x)max=g(t)max=g(a)=6
∴a2+a-6=6,即a2+a-12=0…8分
解得a=3(舍去)或a=-4(舍去)                     …9分
②当a>1时
∵函数t=ax在R上是增函数,且1≤x≤2,∴a≤t≤a2…10分
∵g(t)=t2+t-6在[-
1
2
,+∞)
上单调递增
f(x)max=g(t)max=g(a2)=6
∴(a22+a2-6=6,即(a22+a2-12=0…11分
解得a2=3或a2=-4(舍去)                       …12分
a=
3
…13分
综合①②可知,a=
3
.                           …14分.
点评:本题考查函数的零点,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案