精英家教网 > 高中数学 > 题目详情
8.已知数列{an}是等差数列,其前n项和为Sn,若首项a1>0且-1<$\frac{a_7}{a_6}$<0,有下列四个命题:
P1:d<0;
P2:a1+a12<0;
P3:数列{an}的前7项和最大;
P4:使Sn>0的最大n值为12;
其中正确的命题为(  )
A.P1,P2B.P1,P4C.P2,P3D.P3,P4

分析 数列{an}是等差数列,其前n项和为Sn,首项a1>0,且-1<$\frac{a_7}{a_6}$<0,则d<0.∴a6>0,a7<0,且a6+a7>0.再利用等差数列的通项公式、求和公式及其性质即可得出.

解答 解:数列{an}是等差数列,其前n项和为Sn,首项a1>0,且-1<$\frac{a_7}{a_6}$<0,则d<0.∴a6>0,a7<0,且a6+a7>0.
则P1:d<0,正确;
P2:a1+a12=a6+a7>0,因此不正确;
P3:数列{an}的前6项和最大,因此不正确;
P4:S12=$\frac{12({a}_{1}+{a}_{12})}{2}$>0,${S}_{13}=\frac{13({a}_{1}+{a}_{13})}{2}$=13a7<0.因此正确.
综上可得:正确的命题为P1,P4
故选:B.

点评 本题考查了等差数列的通项公式、求和公式及其性质、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.给出下列几个式子:
(1)tan25°+tan35°+$\sqrt{3}$tan25°tan35°;   
(2)$\frac{1+tan15°}{1-tan15°}$;
(3)2(sin35°cos25°+sin55°cos65°);     
(4)$\frac{2tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$.
其中结果为$\sqrt{3}$的式子的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
关于上述样本的下列结论中,正确的是(  )
A.②、③都不能为系统抽样B.②、④都不能为分层抽样
C.①、④都可能为系统抽样D.①、③都可能为分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.记半径为1的圆为C1,C1的外切正三角形的外接圆为C2,C2的外切正三角形的外接圆C3,…Cn-1的外切正三角形的外接圆为Cn,则C16的面积是(  )
A.215•πB.216•πC.230•πD.232•π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.cos(-$\frac{79π}{6}$)的值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过A(-1,5),B(2,-1)两点的直线方程为(  )
A.2x-y+3=0B.x-2y+3=0C.2x+y-3=0D.x+2y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.具有线性相关的两个随机变量x,y可用线性回归模型y=bx+a+e表示,通常e是随机变量,称为随机误差,它的均值E(e)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x) 是定义在R上且以2为周期的偶函数,当0≤x≤1时,f(x)=x2,如果直线y=x+a与曲线y=f(x) 恰有三个不同的交点,则实数a的取值范围是(  )
A.[2k,2k+$\frac{1}{4}$](k∈Z)B.(2k-$\frac{1}{4}$,2k)(k∈Z)C.(2k-$\frac{1}{2}$,2k)(k∈Z)D.(2k,2k+$\frac{1}{4}$)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若1<a<4,-2<b<4,则a-b的取值范围是(  )
A.(-1,8)B.(0,2)C.(-3,6)D.(-3,0)

查看答案和解析>>

同步练习册答案