精英家教网 > 高中数学 > 题目详情
18.给出下列几个式子:
(1)tan25°+tan35°+$\sqrt{3}$tan25°tan35°;   
(2)$\frac{1+tan15°}{1-tan15°}$;
(3)2(sin35°cos25°+sin55°cos65°);     
(4)$\frac{2tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$.
其中结果为$\sqrt{3}$的式子的个数是(  )
A.1B.2C.3D.4

分析 利用两角和差的三角公式、二倍角公式化简各个式子,求得结果,从而得出结论.

解答 解:(1)tan25°+tan35°+$\sqrt{3}$tan25°tan35°=tan60°(1-tan25°tan35°)+$\sqrt{3}$tan25°tan35°=$\sqrt{3}$;
(2)$\frac{1+tan15°}{1-tan15°}$=tan(45°+15°)=$\sqrt{3}$;
(3)2(sin35°cos25°+sin55°cos65°)=2sin(35°+25°)=$\sqrt{3}$;
(4)$\frac{2tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$=tan(2•$\frac{π}{6}$)=tan$\frac{π}{3}$=$\sqrt{3}$;
故选:D.

点评 本题主要考查两角和差的三角公式、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.一几何体的三视图如图所示,则该几何的表面积为(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图甲,在平面四边形PABC中,PA=AC=2,PA=AC=2,∠P=45°,∠B=90°,∠PCB=105°,现将四边形PABC沿AC折起,使平面PAC⊥平面ABC(如图乙),点D是棱PB的中点.
(Ⅰ)求证:BC⊥AD;
(Ⅱ)试探究在棱PC上是否存在点E,使得平面ADE与平面ABC所成的二面角的余弦值为$\frac{{\sqrt{21}}}{7}$.若存在,请确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+3x,x≥0}\\{{x}^{2}-3x,x<0}\end{array}\right.$,若关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,则实数a的最大值是(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别是为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2015年8月某日某省x个监测点数据统计如下:
空气污染指数
(单位:μg/m3
[0,50](50,100](100,150](150,200]
监测点个数1540y10
(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(2)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A“两个都为良”发生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sin(x+$\frac{π}{4}$)=$\frac{3}{5}$,且0<x<π,则cos2x=(  )
A.$\frac{24}{25}$B.$-\frac{24}{25}$C.$\frac{7}{25}$D.$-\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.偶函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=2x,则关于x的方程f(x)=(${\frac{1}{2}}$)x在x∈[0,4]上解的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an},{bn}满足a1=b1=3,an+1-an=$\frac{{{b_{n+1}}}}{b_n}$=3,n∈N*,若数列{cn}满足cn=b1an,则c2013=(  )
A.92012B.272012C.92013D.272013

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}是等差数列,其前n项和为Sn,若首项a1>0且-1<$\frac{a_7}{a_6}$<0,有下列四个命题:
P1:d<0;
P2:a1+a12<0;
P3:数列{an}的前7项和最大;
P4:使Sn>0的最大n值为12;
其中正确的命题为(  )
A.P1,P2B.P1,P4C.P2,P3D.P3,P4

查看答案和解析>>

同步练习册答案