精英家教网 > 高中数学 > 题目详情
3.已知sin(x+$\frac{π}{4}$)=$\frac{3}{5}$,且0<x<π,则cos2x=(  )
A.$\frac{24}{25}$B.$-\frac{24}{25}$C.$\frac{7}{25}$D.$-\frac{7}{25}$

分析 法一:利用特殊角的三角函数值,两角和的正弦函数公式展开已知可求sinx+cosx=$\frac{3\sqrt{2}}{5}$,两边平方可得sin2x=-$\frac{7}{25}$,结合已知可求范围2x∈(π,$\frac{3π}{2}$),利用同角三角函数基本关系式即可求得cos2x的值;
法二:由已知可求cos(x+$\frac{π}{4}$),利用诱导公式,二倍角公式即可计算得解.

解答 解:法一:∵sin(x+$\frac{π}{4}$)=$\frac{3}{5}$,
∴$\frac{\sqrt{2}}{2}$(sinx+cosx)=$\frac{3}{5}$,可得:sinx+cosx=$\frac{3\sqrt{2}}{5}$,
∴平方可得:1+sin2x=$\frac{18}{25}$,解得:sin2x=-$\frac{7}{25}$.
∵0<x<π,可得x+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{5π}{4}$),sin(x+$\frac{π}{4}$)=$\frac{3}{5}$>0,
∴x+$\frac{π}{4}$∈($\frac{π}{4}$,π),可得:x∈(0,$\frac{3π}{4}$),
∴2x∈(0,$\frac{3π}{2}$),
∴结合sin2x=-$\frac{7}{25}$<0,可得:2x∈(π,$\frac{3π}{2}$),
∴cos2x=-$\sqrt{1-si{n}^{2}2x}$=-$\sqrt{1-(-\frac{7}{25})^{2}}$=-$\frac{24}{25}$.
法二:∵0<x<π,可得:x+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{5π}{4}$),
∵sin(x+$\frac{π}{4}$)=$\frac{3}{5}$,
∴利用正弦函数的图象可知必有cos(x+$\frac{π}{4}$)=-$\frac{4}{5}$.
∴cos2x=2sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)=2×$\frac{3}{5}×(-\frac{4}{5})$=-$\frac{24}{25}$.
故选:B.

点评 本题主要考查了特殊角的三角函数值,两角和的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,由题意求得范围2x∈(π,$\frac{3π}{2}$)是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图是一个简单组合体的三视图,想象它表示的组合体的结构特征,并尝试画出它的示意图(尺寸不作严格要求)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在多面体ABCDEFG中,四边形ABCD与CDEF均为正方形,CF⊥平面ABCD,BG⊥平面ABCD,且AB=2BG=4BH.
(1)求证:平面AGH⊥平面EFG;
(2)求二面角D-FG-E的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示在圆锥PO中,已知PO=$\sqrt{2}$,⊙O的直径AB=2,C是$\widehat{AB}$上的点(点C不与AB重合),D为AC中点.
(Ⅰ)证明:平面POD⊥平面PAC;
(Ⅱ)求圆锥PO的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列几个式子:
(1)tan25°+tan35°+$\sqrt{3}$tan25°tan35°;   
(2)$\frac{1+tan15°}{1-tan15°}$;
(3)2(sin35°cos25°+sin55°cos65°);     
(4)$\frac{2tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$.
其中结果为$\sqrt{3}$的式子的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b是任意实数,且a<b,则(  )
A.a2<b2B.$\frac{b}{a}>1$C.lg(b-a)>0D.($\frac{1}{3}$)a>($\frac{1}{3}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等差数列{an}的前n项和Sn,若a3=7,S7=35,则a8=(  )
A.-3B.-4C.-5D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.二项式(ax+$\frac{{\sqrt{3}}}{6}$)6的展开式中x5的系数为$\sqrt{3}$,则$\int_0^a$x2dx=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过A(-1,5),B(2,-1)两点的直线方程为(  )
A.2x-y+3=0B.x-2y+3=0C.2x+y-3=0D.x+2y-3=0

查看答案和解析>>

同步练习册答案