精英家教网 > 高中数学 > 题目详情
8.一几何体的三视图如图所示,则该几何的表面积为(  )
A.12B.16C.20D.24

分析 由三视图可以得出,此几何体可以看作是一个边长为2的正方体被截去了一个棱台而得到,此棱台的高为2,一底为直角边长为2的等腰直角三角形,一底为直角边长为1的等腰直角三角形,几何体的表面积易求.

解答 解:由三视图知,此几何体可以看作是一个边长为2的正方体被截去了一个棱台而得到,此棱台的高为2,一底为直角边长为2的等腰直角三角形,一底为直角边长为1的等腰直角三角形,
该几何体的表面积是$\frac{1}{2}×2×2$+2×2-$\frac{1}{2}×1×1$+2×2+2×$\frac{1}{2}×1×2$+$\frac{\sqrt{2}+2\sqrt{2}}{2}×\sqrt{4+\frac{1}{2}}$=20
故选:C.

点评 本题考查由三视图求面积、体积,解答本题,关键是由三视图得出几何体的几何特征,以及几何体的长宽高等几何数据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数y=sin(3x+$\frac{π}{4}$)+$\sqrt{3}$cos(3x+$\frac{π}{4}$)的最小正周期是(  )
A.B.C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x>0,y>0,且$\frac{4}{x}$+$\frac{3}{y}$=1.
(Ⅰ)求xy的最小值,并求出取得最小值时x,y的值;
(Ⅱ)求x+y的最小值,并求出取得最小值时x,y的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.分数指数幂表示下列各式
(1)$\sqrt{a}$(a>0);
(2)$\root{3}{{x}^{2}}$;
(3)$\frac{1}{\root{3}{a}}$;
(4)$\sqrt{{x}^{3}}$(x>0);
(5)$\sqrt{{x}^{4}{y}^{3}}$(y>0);
(6)$\frac{{m}^{2}}{\sqrt{m}}$(m>0);
(7)$\root{3}{(a+b)^{2}}$;
(8)$\sqrt{(m-n)^{2}}$(m>n)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个几何体的三视图如图所示,该几何体的体积为(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{6}}{4}$C.4$\sqrt{3}$D.4$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图是一个简单组合体的三视图,想象它表示的组合体的结构特征,并尝试画出它的示意图(尺寸不作严格要求)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,若该几何体的体积为$\frac{1}{3}$+π,则a=(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,四边形ABCD中,AD∥BC,AB=CD,AC,BD交于点Q,∠BAC=∠CAD,AP为四边形ABCD外接圆的切线,交BD的延长线于点P.
(1)求证:PQ2=PD•PB;
(2)若AB=3,AP=2,AD=$\frac{4}{3}$,求AQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列几个式子:
(1)tan25°+tan35°+$\sqrt{3}$tan25°tan35°;   
(2)$\frac{1+tan15°}{1-tan15°}$;
(3)2(sin35°cos25°+sin55°cos65°);     
(4)$\frac{2tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$.
其中结果为$\sqrt{3}$的式子的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案