精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+3x,x≥0}\\{{x}^{2}-3x,x<0}\end{array}\right.$,若关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,则实数a的最大值是(  )
A.9B.10C.11D.12

分析 函数f(x),如图所示,[f(x)]2+af(x)<0,当a>0时,-a<f(x)<0.由于关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,因此其整数解为4,f(3)=0.可得f(5)≤-a,-a<f(4)<0,解出即可得出.

解答 解:函数f(x),如图所示,
[f(x)]2+af(x)<0,
当a>0时,-a<f(x)<0,
由于关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,
因此其整数解为4,又f(5)=-52+3×5=-10.
f(4)=-42+3×4=-4,f(3)=-32+3×3=0.
∴f(5)≤-a,-a<f(4)<0.
则10≥a>4,
a≤0不必考虑,
可得:实数a的最大值是10.
故选:B.

点评 本题考查了函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.分数指数幂表示下列各式
(1)$\sqrt{a}$(a>0);
(2)$\root{3}{{x}^{2}}$;
(3)$\frac{1}{\root{3}{a}}$;
(4)$\sqrt{{x}^{3}}$(x>0);
(5)$\sqrt{{x}^{4}{y}^{3}}$(y>0);
(6)$\frac{{m}^{2}}{\sqrt{m}}$(m>0);
(7)$\root{3}{(a+b)^{2}}$;
(8)$\sqrt{(m-n)^{2}}$(m>n)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,四边形ABCD中,AD∥BC,AB=CD,AC,BD交于点Q,∠BAC=∠CAD,AP为四边形ABCD外接圆的切线,交BD的延长线于点P.
(1)求证:PQ2=PD•PB;
(2)若AB=3,AP=2,AD=$\frac{4}{3}$,求AQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在多面体ABCDEFG中,四边形ABCD与CDEF均为正方形,CF⊥平面ABCD,BG⊥平面ABCD,且AB=2BG=4BH.
(1)求证:平面AGH⊥平面EFG;
(2)求二面角D-FG-E的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.画出函数y=$\frac{x+2}{2x-3}$的图象,并写出值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示在圆锥PO中,已知PO=$\sqrt{2}$,⊙O的直径AB=2,C是$\widehat{AB}$上的点(点C不与AB重合),D为AC中点.
(Ⅰ)证明:平面POD⊥平面PAC;
(Ⅱ)求圆锥PO的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列几个式子:
(1)tan25°+tan35°+$\sqrt{3}$tan25°tan35°;   
(2)$\frac{1+tan15°}{1-tan15°}$;
(3)2(sin35°cos25°+sin55°cos65°);     
(4)$\frac{2tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$.
其中结果为$\sqrt{3}$的式子的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等差数列{an}的前n项和Sn,若a3=7,S7=35,则a8=(  )
A.-3B.-4C.-5D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.记半径为1的圆为C1,C1的外切正三角形的外接圆为C2,C2的外切正三角形的外接圆C3,…Cn-1的外切正三角形的外接圆为Cn,则C16的面积是(  )
A.215•πB.216•πC.230•πD.232•π

查看答案和解析>>

同步练习册答案